APPENDIX A

ATMOSPHERIC NOISE DATA

This appendix contains predicted levels of atmospheric noise for frequency of 1 MHz. The predictions contained in this appendix are based on a relatively small amount of measured noise data. It is therefore advisable to consult recent noise measurements when they are available for an area under study. Data from noise measuring stations in a worldwide network are published periodically by the National Bureau of Standards, and provide valuable information when used in conjunction with the predictions.

The predicted noise level is obtained as follows:

- Select the season and time of the day for which a prediction is desired.
- Refer to the map that covers the season and locate time selected.
- Locate the site on the map and determine the noise value of 1 MHz by interpolating between contour lines.
Figure A.4. Expected Value of Radio Noise at 1 MHz (December, January and February; 1200-1000)
Figure A-5. Expected Value of Radio Noise at 1 MHz (December, January and February; 1600-2000)
Figure A-19. Expected Value of Radio Noise at 1 MHz (September, October and November; 1200-1600)
Figure A-20. Expected Value of Radio Noise at 1 MHz (September, October and November, 1600-2000)
APPE N D I X B

REFERENCES

34. NBS Report No. 3586.
36. NBS Report No. 5037.
37. NBS Technical Note 100.
38. Naval Ordnance Laboratory, Corona, NOLC Report 721, Horizontal VLF Transmitting Antennas, Near the Earth.
39. NAVELEX 0101,102; Naval Communication Station Design.
40. NAVELEX 0101,103; HF Radio Propagation and Facility Site Selection.
41. NAVELEX 0101,104; HF Radio Antenna Systems.
50. NAVSHIPS 0967-8020, Maintenance Standard Book for Radio Transmitting Set AN/FRT-72A.
52. NAVSHIPS 93716, AN/BRR-3 (U), Radio Receiving Set, Technical Manual.
53. NAVSHIPS 94592.
60. NRL Memorandum Report 1783, Naval Research Laboratory, Radiation Parameters of the VLF Transmitting Station NWC, North West Cape, Australia, June 1967.
63. NRL Memo Report 1606, Naval Research Laboratory, Program for the Determination of the Effective Height and Radiation Resistance of the VLF Transmitting System at NAVCOMSTA, North West Cape, Australia, Garner and Rauderbusch, April 1965.
64. NRL Report 6893, Naval Research Laboratory, A VLF Effective Ground Conductivity Map of Canada and Greenland With Revisions Derived From Propagation Data, Hauser, Garner, and Rhoads, March 1969.
65. NWC - NWCL TP No. 770.
66. NWCL TP 782, Naval Weapons Center, Research Dept., Seeley E. W. and Moisjon W. K., Horizontal End-Loaded VLF Transmitting Antenna.
67. NWCL TP 881, High Power VLF Transmitting Antennas Using Fast Wave Horizontal Dipole Arrays, Naval Weapons Center, Corona, Calif.
68. NWC TP 4972, Experimental Fast-Wave Dual Dipole VLF Transmitting Antenna, Naval Weapons Center, China Lake, Calif., August 1970.
73. TRG-West, The Pan-Polar LF-VLF Antenna.
78. Westinghouse Georesearch Laboratory, June 1970, Development of a VLF Atmospheric Noise Prediction Model, Report No. 70-1HZ-VLFNO-RI
79. NBS Tech Note 12.