TECHNICAL MANUAL
 for

TEST SET, TELEGRAPH TS-2616/UGM

DEPARTMENT OF THE NAVY

 NAVAL ELECTRONIC SYSTEMS COMMAND
LIST OF EFFECTIVE PAGES

PAGE	CHANGE IN EFFEC'T	PAGE NUMBERS	CHANGE IN EFFECT
Title Page		$2-1$ and $2-2$	
ii and iii/iv		$3-1$ to $3-10$	
v to vii		$4-1$ to $4-27 / 4-28$	
$1-0$	$5-1$ to $5-51 / 5-52$		
$1-1$ to $1-3 / 1-4$		$6-1$ to $6-34$	

STELMA, Incorporated
17 Amelia Place
Stamford, Connecticut

Contract: N600-67-C-0410

Errors found in this publication (other than obvious typographical errors) which have not been corrected by means of Temporary Changes or Permanent Changes should be reported on a user activity comment sheet NAVSHIPS 4914 (10-62) FSN 0105-503-9850. Such report should include the complete title of the publication and the publication number, identify the page and line or figure and location of the error, and be forwarded to the Code 0453

All requests for this publication should be directed to the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pennsylvania, 19120.

table of CONTENTS

Paragraph Page Paragraph Page

SECTION 1 - GENERAL INFORMATION

1-1	Scope	$1-1$
$1-2$	Description	$1-1$
$1-3$	Reference Data	$1-1$
$1-4$	Equipment Supplied	$1-2$
$1-5$	Equipment and Publica-	
	tions Required But	
	Not Supplied .. $1-3 / 1-4$	

SECTION 2 - INSTALIATION
2-1 Power Requirements .. 2-1
2-2 Installation Require-ments 2-1
2-3 Inspection and Adjust- ment 2-1
SECTION 3 - OPERATION
3-1 Functional Operation 3-1
3-2 Controls and Indicators 3-4
3-3 Sequence of Operation 3-7
3-4 Operator's Maintenance 3-10
SECTION 4 - TROUBLE SHOOTING
4-1 Logical Trouble Shooting 4-1
4-2 Trouble Shooting Procedure 4-2
4-3 Over-All Functional Description 4-3
4-4 Logic Analysis 4-10
SECTION 5 - MAINTENANCE
5-1 Failure, and Performance and Operational Reports. 5-1
5-2 Preventive Maintenance 5-1
5-3 Operational Checks 5-1
5-4 Adjustments 5-6
5-5 Special Repair Data 5-9
SECTION 6 - PARTS LIST
6-1 Introduction 6-1
6-2 List of Assemblies 6-2
6-3 Maintenance Parts List 6-3
6-4 List of Manufacturers 6-3
6-5 Notes 6-3

LIST OF ILLUSTRATIONS

Figure Page
SECTION 1 - GENERAL INFORMATION
1-1 Test Set, Telegraph TS-2616/UGM 1-0

SECTION 2 - INSTALLATION
2-1 Test Set, Telegraph TS-2616/UGM, Mounting Dimensions . . . 2-1

SECTION 3 - OPERATION
3-1 Test Set, Telegraph TS-2616/UGM, Simplified Block Diagram. 3-1

> 3-2 Test Set, Telegraph TS-2616/UGM, Controls and Indicators $3-8$

SECTION 4 - TROUBLE SHOOTING

4-2 Over-All Start-Stop
\quad Timing Chart. 4-6
4-3 Test Set, Telegraph TS-2616/UGM, Detailed Block Diagram. 4-7/4-8
4-4 Graphic Symbols 4-9
4-5 Delay Filter Timing 4-9
4-6 Down Counter Timing. 4-10
4-7 Sync Network Timing 4-10
4-8 Distortion Counter Decade Timing 4-11
4-9 Distortion Counter Timing 4-12
4-10 Baud Counter Timing 4-12
4-11 Transfer Pulse Generator Timing 4-13
Figure Page
SECTION 4 - TROUBLE SHOOTING (Cont'd)
4-12 Test Set, Telegraph TS-2616/UGM, Over-All Logic Diagram (Sheet 1 of 3) 4-23/4-24
4-12. Test Set, Telegraph TS-2616/UGM, Over-All Logic Diagram (Sheet 2 of 3) 4-25/4-26
4-12 Test Set, Telegraph TS-2616/UGM, Over-All Logic Diagram (Sheet 3 of 3) 4-27/4-28
SECTION 5 - MAINTENANCE
5-1 Test Set, TelegraphTS-2616/UGM, PartsLocations 5-2
5-2 Component Board Al,Parts Locations 5-4
5-3 Component Board Al (Time
Base, Oscillator and
P/O Downcounter),Schematic Diagram . . 5-7/5-8
5-4 Component Board A2, PartsLocations 5-10

5-5 Component Board A2 (Time Base, P/O Downcounter), Schematic Diagram ..5-11/5-12
5-6 Component Board A3, Parts Locations 5-13/5-14
5-7 Component Board A3 (Time Base, Sync Network), Schematic Diagram ..5-15/5-16
5-8 Component Board A4, Parts Locations 5-17/5-18
5-9 Component Board A4 (Input Circuits, Delay and Mixer Network),
Schematic Diagram ..5-19/5-20

LIST OF ILLUSTRATIONS (Cont'd)

Figure
Page
SECTION 5 - MAINTENANCE (Cont'd)
5-10 Component Board A5, Parts Locations 5-21/5-22
5-11 Component Board A5
(Baud Counter and
Transition Select Gates),
Schematic Diagram. 5-23/5-24
5-12 Component Board A6, Parts Locations. . . 5-25/5-26
5-13 Component Board A6 (Distortion Counter), Schematic Diagram. 5-27/5-28
5-14 Component Board A7, Parts Locations. ... 5-29/5-30
5-15 Component Board A7 (Transfer Control Network and Comparator Gates), Schematic Diagram5-31/5-32
5-16 Component Board A8 (P / O Distortion Register, Transition Gates, and Meter Drive), Schematic Diagram. 5-33/5-34
5-17 Component Boards A8 and A9, Parts Locations 5-35/5-36

Figure
Page
5-18 Component Board A9 (P/O Distortion Register, Transition Gates, and Meter Drive), Schematic Diagram 5-37/5-38
5-19 Component Board Al0, Parts Locations. . . . 5-39/5-40
5-20 Component Board Al0
(Power Supply),
Schematic Diagram. 5-41/5-42
5-21 Component Board Al3
(Miscellaneous Circuits), Schematic Diagram 5-43/5-44
5-22 Component Board Al3, Parts Locations. .. 5-43/5-44
5-23 Input Select Network, Schematic Diagram . . 5-45/5-46
5-24 Component Board Al5

5-24 Component Board Als
(Crystals) Parts Locations. 5-47/5-48
5-25 Primary Power Distribution 5-47/5-48
5-26 Over-All Wiring Diagram (Sheet 1 of 2) 5-49/5-50
5-26 Over-All Wiring Diagram
(Sheet 2 of 2) $\ldots . .5-51 / 5-52$

LIST OF TABLES

Table
Page

Table
Page
1-1 Equipment Supplied..... 1-2
1-2 Equipment and Publications Required But Not Supplied. 1-3/1-4SECTION 1 - GENERAL INFORMATION1-1 Equipment Supplied..... 1-21-2 Equipment and Publica-tions Required But NotSupplied. 1-3/1-4

SECTION 3 - OPERATION
SECTION 3 - OPERATION

3-1 Analyzer Controls,
Indicators, and Jacks.. 3-2

SECTION 4 - TROUBLE SHOOTING
4-1 Timing Signal Frequencies 4-13
4-2 Weighting 4-16
SECTION 6 - PARTS LIST
6-1 List of Major Assemblies 6-2
6-2 Maintenance Parts List. 6-3
6-3 List of Manufacturers 6-34

SECTION 1

GENERAL INFORMATION

1-1. SCOPE.

C
This manual describes installation, operation, principles of operation, troubleshooting, and maintenance of Test Set, Telegraph TS-2616/UGM (see figure 1-1), hereafter referred to as the Analyzer. This Technical Manual is in effect upon receipt. Extracts from this publication may be made to facilitate the preparation of other Department of Defense publications.

1-2. DESCRIPTION.

a. The Analyzer consists of a component board carriage, housed in a portable watertight case. All operating controls are mounted on the front panel of the carriage, behind the front cover. The unit has a self-contained power supply and time base generator. The power cord and technical manual are stored inside the front cover, with spare fuses.
b. The Analyzer measures and indicates timing distortion present in a start-stop or synchronous data/telegraph signal. Measurement is accomplished by comparing the time positions of the signal transitions with accurate reference transitions established by an internal or external time base. The internal time base permits measuring $37.5,45.5,50$, $56.8,61.1,74.2,75,110,150,300,600,1200$, or 2400 baud signals. Using an external time base, signals with other rates up to 2400 baud may be measured. Distortion indication is obtained from the PERCENT DISTORTION meter deflection, which indicates transition displacement in per cent of unit interval. The Analyzer also permits breaking down the peak distortion readings to determine which distortion components (end, bias, early and late) contribute to the total distortion. An on-line signal may be measured without disrupting traffic. The unit meets the requirements of FED-STD-222, is rfi protected, and does not radiate the signal under test, thus minimizing external detection.

1-3. REFERENCE DATA.

(a. CIRCUIT COMPOSITION.
 b. POWER REQUIRED.
 c. AMBIENT TEMPERATURE.
 d. RELATIVE HUMIDITY.
 e. PERCENT DISTORTION INDICATION

 ACCURACY.f. LOOP CURRENT INDICATION

ACCURACY.
g. CRYSTAL OSCILLATOR ACCURACY.

Solid state.
l15-volt ac, single phase, 50,60 , or $400 \mathrm{~Hz}, 25$ watts. 0° to $+50^{\circ} \mathrm{C}\left(30^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
95 per cent maximum.
± 2 per cent.
± 2 per cent of full scale.
Less than 5 parts in 10^{4}.
h. INPUT SIGNAL MODES ACCEPTED.

i. INPUT SIGNALING RATES

 ACCEPTED.j. INPUT SIGNAL CODING ACCEPTED. k. INPUT IMPEDANCE.

20-milliampere neutral.
60 -milliampere neutral.
20-milliampere polar.
30-milliampere polar.
Low-level polar.
High-impedance polar.
Special input.
$37.5,45.5,50,56.8,61.1,74.2,75$ $110,150,300,600,1200$, and 2400 bauds.
5-level start-stop, 8-level start-stop, synchronous.
Less than 300 ohms (20 and 30 milliamperes).
Less than 100 ohms (60 milliamperes). Greater than 50 K ohms (high Z). Greater than 5 K ohms (low-level).

1-4. EQUIPMENT SUPPLIED.

TABLE 1-1. EQUIPMENT SUPPLIED

$\begin{gathered} \text { QTY } \\ \text { PER } \\ \text { EQUIP } \end{gathered}$	NOMENCLATURE	DIMENSIONS (IN.)			$\begin{aligned} & \text { VOLUME } \\ & \text { (CU.IN.) } \end{aligned}$	WEIGHT (LB)
		HEIGHT	WIDTH	DEPTH		
1	Test Set, Telegraph AN/TS-2616/UGM (Analyzer)	11-1/8	9-3/8	16-1/8	1682	33 *
1	Front Cover	-	-	-	-	-
1	Spare Fuse, 1/2 ampere	-	-	-	-	-
1	Spare Fuse, 1/8 ampere	-	-	-	-	-
1	Spare Fuse, 1 ampere	-	-	-	-	-
1	Technical Manual for Test Set, Telegraph AN/TS2616/UGM, NAVSHIPS 0969-125-7010	-	-	-	-	-

*Weight of unit includes weight of separate items.

1-5. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED.

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED
QUANTITY: ONE PER EQUIPMENT

SECTION 2

INSTALLATION

2-1. POWER REQUIREMENTS.

The Analyzer receives 115 -volt ac, single phase, 50,60 , or $400 \mathrm{~Hz}, 25$-watt power through its 8 -foot, 3 -wire plug-in power cord. Primary power distribution is shown in figure 5-25.

2-2. INSTALLATION REQUIREMENTS.

The Analyzer is portable and may be operated in any position and in any location where ambient temperature is within 0° to $+50^{\circ} \mathrm{C}$. Mounting dimensions are shown in figure 2-1.

Figure 2-1. Test Set Telegraph TS-2616/UGM, Mounting Dimensions

2-3. INSPECTION AND ADJUSTMENT.
The Analyzer is correctly adjusted at the factory. Upon receipt of the unit, make the following checks.
a. INITIAL POWER APPLICATION .
(1) Remove front cover by turning four wing-knobs counterclockwise one-half turn.
(2) Check that front panel fuses are present and of correct current rating as marked on front panel.
(3) Unwind power cord from inside front cover and plug it into a ll5-volt ac receptacle.
(4) Set POWER AC switch to ON. AC POWER lamp should light.
(5) Allow a lo-minute warmup to stabilize the oscillator.
b. INITIAL CHECKS. - Perform the operational checks outlined in paragraph 5-3.

SECTION 3

OPERATION

3-1. FUNCTIONAL OPERATION.

a. GENERAL.
(1) The Analyzer measures timing distortion in start-stop and synchronous data/ telegraph signals. It permits the operator to determine what distortion components (marking end, spacing end, marking bias, spacing bias) constitute the total distortion. It also permits measurement of any one mark-to-space or space-to-mark transition. Refer to "Principles of Telegraph (Teletypewriter) Part E "Navships 0967-255-0010 for a concise introductory discussion on the teletypewriter signal, its distortion and analysis.
(2) The time positions of the data signal transitions are compared with those of an internal time-base signal.
(a) For start-stop signals, the first transition of the start code element is synchronized with the time base.
(b) For synchronous signals, the average time position of the signal transitions is synchronized with the time base.
(3) The time displacement between the signal transition(s) and time-base transition(s) is indicated on the PERCENT DISTORTION meter as a percentage of one unit interval. The MARKING or SPACING lamp lights to indicate which of the signal elements (mark of space) is longer in duration.
(a) When measuring end distortion, the MARKING lamp indicates that che transition(s) occurred late. When measuring bias distortion, the MARKING lamp indicates that the transition(s) occurred early.
(b) When measuring end distortion, the SPACING lamp indicates that the transition(s) occurred early. When measuring bias distortion, the SPACING lamp indicates that the transition(s) occurred late.
(4) The setting of the DISTORTION SELECT switch determines which component (end, bias, peak, early peak, or late peak) of distortion is measured. For total peak, early peak, or late peak measurements, the meter pointer holds at its highest deflection until the PEAK RESET switch is momentarily depressed to MAN. When the PEAK RESET switch is set to AUTO, the meter is automatically reset to zero every five seconds.
(5) Depending on the setting of the TRANSITION SELECT switch, the meter records either the displacement of a specific transition selected or the average displacement of all transitions.

Note

Only bias and peak distortion can be measured on synchronous signals. The measurement of end distortion and of individual transitions applies only to start-stop signals.
b. SIMPLIFIED BLOCK DIAGRAM ANALYSIS (see figure 3-1, 4-1 and 4-2).
(1) The data signal under test is coupled through the input circuits, which isolate and distribute data signal MS to the time-base, baud counter, and transfer control circuits.
(2) The time-base circuits generate timing signal CTB, whose rate is 100 times that of the MS bit rate. CTB is distributed to the transfer control and distortion counter circuits.
(3) The distortion counter circuits count CTB to produce timing signal \mathbb{N}, whose rate is the same as the MS bit rate.
(4) CTB is synchronized with MS in one of two ways.
(a) For measuring synchronous data signals, CTB is synchronized with the average time position of the MS transitions. In the time-base circuits, N is compared with MS, and any difference in rate is corrected by adding a pulse to or removing a pulse from CTB.
(b) For measuring start-stop data signals, CTB is synchronized with the first transition of each MS start element. In the time-base circuits, CTB is enabled at each MS start element and disabled at each MS stop element.
(5) The baud counter circuits count N and monitor MS to derive three control signals (SC, ST, and $\overline{\mathrm{RST}}$) which synchronize the Analyzer circuitry for start-stop signal measurement.
(a) SC inhibits CTB at each MS stop element and enables CTB at each MS start element.
(b) ST inhibits the transfer control circuits during each start element.
(c) $\overline{\mathrm{RST}}$ resets the distortion counter circuits at the first transition of each MS start element.
(6) The distortion counter circuits count CTB. They count from 50 to 0 to 50 for each possible MS transition. If the MS transition is not distorted, it will occur as the count reaches 0 . If the MS transition is early or late, the count, at the time the transition occurs, will be numerically equal to the per cent of displacement.
(7) The transfer control circuits monitor MS. Each time an MS transition occurs, ET or LT shifts the count present in the distortion counter, into the distortion register circuits. There the count is stored until the next MS transition occurs.
(8) The distortion register circuits convert the stored digital count into an equivalent analog level, which deflects the PERCENT DISTORTION meter. Metermovement damping averages the distortion indications of a series of MS transitions.

3-2. CONTROLS AND INDICATORS (see figure 3-2).
Table 3-1 describes the function of each control and indicator.

TABLE 3-1. ANALYZER CONTROLS, INDICATORS, AND JACKS

PANEL IDENTIFICATION	DESCRIPTION	FUNCTION
AC POWER	Toggle switch	Applies primary power to unit.
AC POWER	Indicator lamp, red	Lights when primary power is applied to unit.
1/2 A (2)	Cartridge-type fuse	Fuse both sides of primary power line.
PERCENT DISTORTION	Meter	Indicates distortion of data signal under test in per cent of unit interval.
LOOP CURRENT	Meter	Indicates current magnitude, in milliamperes of high-level data signal under test.
INPUT SELECT	6-position rotary switch	Sw Pos Function
		NEUTRAL 20MA Adjusts input circuits to accept 20 -milliampere neutral signals.
		NEUTRAL 60 MA Adjusts input circuits to accept 60-milliampere neutral signals.
		POLAR 20/30 Adjusts input circuits to accept 20 - or $30-$ milliampere polar signals.
		POLAR HI-Z Adjusts input circuits to accept high-im- pedance polar signals.

TABLE 3-1. ANALYZER CONTROLS, INDICATORS, AND JACKS (Cont'd)

TABLE 3-1. ANALYZER CONTROLS, INDICATORS, AND JACKS (Cont'd)

TABLE 3-1. ANALYZER CONTROLS, INDICATORS, AND JACKS (Cont'd)

PANEL IDENTIFICATION	DESCRIPTION	FUNCTION
MARKING	Indicator lamp, white	Lights when bias distortion component is advanced or when end distortion com- ponent is delayed.
SPACING	Indicator lamp, white is delayed or when end distortion com- ponent is advanced. SIG IND-S	Indicator lamp, white
Indicator lamp, white	Lights when input signal is at space.* input signal is at mark.*	

*Steady mark or space causes corresponding lamp to glow brightly. Data signal conditions cause both lamps to glow dimly. Relative brightness of lamps indicates the ratio of marks and spaces in signal.

3-3. SEQUENCE OF OPERATION.

a. Remove front cover from Analyzer (turn the four wing-knobs $1 / 2$ turn counterclockwise).
b. Unwind power cord, from inside front cover, and plug it into a 115 -volt ac outlet.
c. Set AC POWER switch to ON (AC POWER lamp should light) and allow a 10 minute warmup.
d. Make the following preliminary control settings.
(1) Set INFUT SELECT switch to position that corresponds to mode of signal to be analyzed.
(2) Set INPUT POLARITY switch to (+).
(3) Set INPUT FILTER switch to OUT.
(4) Set PEAK RESET switch to OFF.
(5) Set TRANSITION MARKERS switch to OUT.
(6) Set CODE LEVEL switch to:
(a) SYNC, if signal to be analyzed is synchronous.
(b) $\mathrm{S} / \mathrm{S} 5$, if signal to be analyzed is start-stop, 5 -level code.
(c) $\mathrm{S} / \mathrm{S} 8$, if signal to be analyzed is start-stop, 8 -level code.
(7) Set RATE BAUDS switch to rate that corresponds to bit rate of signal to be analyzed.

Note

If external time base is to be used instead of internal time base, set RATE BAUDS switch to EXT OSC. Connect external time-base generator (square wave) to EXT OSC connector. Set frequency of generator to 200 times the baud rate of the signal to be analyzed (external signal level should not exceed 5 volts peak to peak).
(8) Set TRANSITION SELECT switch to ALL.
(9) If the signal to be analyzed is to be displayed on an external oscilloscope, connect the oscilloscope to the SCOPE SIG, SCOPE SYNC, and SCOPE GRD connectors.
e. Connect signal to be analyzed to either the LO-Z or HI-Z jack as follows.
(1) Connect 20-, 30-, or 60-milliampere signal to $\mathrm{LO}-\mathrm{Z}$ jack. Externally adjust signal current rate for correct indication on LOOP CURRENT meter.

TMC5757026
Figure 3-2. Test Set Telegraph TS-2616/UGM, Controls and Indicators

Note

If external oscilloscope display reveals transients (of less than 2 milliseconds in duration), set the INPUT FILTER switch to IN to remove the transients (do not use filter when data signal rate is greater than 75 baud). To display timing markers on oscilloscope to show ideal time positions for signal transitions, set TRANSITION MARKERS switch to IN.
h. Set DISTORTION SELECT switch to the name of the component of distortion to be measured. When the switch is set to:
(1) END (not used when measuring synchronous signals), the PERCENT DISTORTION meter indicates the average distortion of all mark-to-space transitions. When the MARKING lamp lights, the distortion is late. When the SPACING lamp lights, the distortion is early.
(2) BIAS, the PERCENT DISTORTION meter indicates the average distortion of all space to mark transitions. When the MARKING lamp lights, the distortion is early. When the SPACING lamp lights, the distortion is late.
(3) TOTAL PEAK, the PERCENT DISTORTION meter indicates the largest distortion that occurs during a given measuring period.

Note

With the PEAK RESET switch set to OFF, the measuring period extends until the PEAK RESET switch is momentarily set to MAN, which resets the reading to zero. With the PEAK RESET switch set to AUTO, the reading is reset automatically every five seconds.
(4) EARLY PEAK, same as TOTAL PEAK except only early transitions are measured.
(5) LATE PEAK, same as TOTAL PEAK except only late transitions are measured.
i. Only for start-stop signals under test, perform step h again, except set the TRANSITION SELECT switch to positions 1 through 9 for each setting of the DISTORTION SELECT switch.

Note

Positions 1 through 9 correspond to the 9 transitions between the start element and stop element of 8 -level code signals (positions 7 through 9 do not apply for 5 -level code signals). The PERCENT DISTORTION meter indicates the end, bias, total, early, or late peak distortion of the selected transition.
j. To stop Analyzer, set AC POWER switch to OFF.

3-4. OPERATOR'S MAINTENANCE.
a. PREVENTIVE MAINTENANCE.- Refer to Section 5 of this manual for preventive maintenance information.

WARNING

Voltages dangerous to lifeand limb exist inside unit.
b. EMERGENCY MAINTENANCE. - Operator's emergency maintenance is confined to the replacement of open fuses (see figure 5-1). Spare fuses are stored inside the front cover. If, immediately after replacement, a fuse opens again, notify maintenance personnel.
(1) The two fuses (Fl and F2) on the front panel protect the primary power line.
(2) The two fuses (F3 and F4) on bottom of component board carriage protect the secondary power circuits. To obtain access to these fuses, loosen the four frontpanel slotted captive screws and slide the component board carriage out of the case.

SECTION 4

TROUBLE SHOOTING

4-1. LOGICAL TROUBLE SHOOTING.

This section contains information to aid in quickly and efficiently determining the cause of equipment malfunction. The information is given in order of over-all trouble shooting technique, operational data (functional and logical), and trouble shooting data.
a. SYMPTOM RECOGNITION. - This is the first step in the trouble shooting procedure and is based on a complete knowledge and understanding of equipment operating characteristics. All equipment troubles are not necessarily the direct result of component failure. Therefore, a trouble in an equipment is not always easy to recognize since all conditions of less than peak performance are not always apparent. This type of equipment trouble is usually discovered while accomplishing preventive maintenance procedures. It is important that the "not so apparent" troubles, as well as the apparent troubles, be recognized.
b. SYMPTOM ELABORATION.-After an equipment trouble has been "recognized," all the available aids designed into the equipment should be used to elaborate, further, on the original trouble symptom. Use of front-panel controls and other built-in indicating or testing aids should provide better identification of the original trouble symptoms. Also, checking or otherwise manipulating the operating controls may eliminate the trouble.
c. LISTING PROBABLE FAULTY FUNCTION. - The next step in logical trouble shooting is to formulate a number of "logical choices" as to the cause and likely location (functional section) of the trouble. The "logical choices" are mental decisions which are based on knowledge of the equipment operation, a full identification of the trouble symptom, and information contained in this manual. The over-all functional description and its associated block diagram should be referred to when selecting possible faulty functional sections.
d. LOCALIZING THE FAULTY FUNCTION. - For the greatest efficiency in localizing trouble, the functional sections which have been selected by the "logical choice" method should be tested in an order that will require the least time. This requires a mental selection to determine which section to test first. The selection should be based on a further extension of the "logical choice" method. If the tests do not prove that functional section to be at fault, the next section should be tested, and so on until the faulty functional section is located. As aids in this process, this manual contains a functional description. and a servicing block diagram for each functional section. Waveforms are included for significant check points to aid in isolating the faulty section. Also, where applicable, test data (such as information on control settings, critical adjustments, and required test equipment) are supplied to augment the functional description and servicing block diagram for each functional section.
e. LOCALIZING TROUBLE TO THE CIRCUIT. - After the faulty functional section has been isolated, it is often necessary to make additional "logical choices" as to which group of circuits or circuit (within the functional section) is at fault. Servicing block diagrams for each functional section provide the signal-flow and test-location information needed to bracket and then isolate the faulty circuit.
f. FAILURE ANALYSIS. - After the trouble (faulty component, etc.) has been located (but prior to performing corrective action), the procedures followed up to this point should be reviewed to determine exactly why the fault affected the equipment in the manner it did. This review is usually necessary to make certain that the fault discovered is actually the cause of the malfunction, and not just the result of the malfunction.
g. TROUBLE SHOOTING THE ANALYZER. - First become familiar with its operation (refer to Section 3) and its principles of operation (refer to paragraphs 4-3 and 4-4). Then, use paragraph 4-2 as a general guide to localize and isolate the trouble; see figures 4-1 through 4-12, as required.

WARNING

Voltages dangerous to life and limb exist in this unit.

4-2. TROUBLE SHOOTING PROCEDURE.

When the Analyzer is suspected of malfunction, use the test equipment listed in table 1-2 to perform the following procedure.
a. Check that unit is being used correctly, in accordance with Section 3.
b. Remove unit from case and check that all component boards are secure in their correct receptacles.
c. Check that fuses F3 (1 ampere) and F4 (1/8 ampere), located beneath component board carriage, are good.
d. Measure secondary voltages at test points on component board Al0 (see figures 5-19 and 5-20):
(1) +15 volts, TPl (TP3 common).
(2) -15 volts, TP4 (TP3 common).
(3) +5.8 volts, TP2 (TP3 common).
e. Visually inspect unit.
(1) Check wafer switches for damage, corrosion, and bent contacts.
(2) Check all wiring and mounted components for damage and burns.
f. Check each of component boards Al through A9 (see figures 5-2 through 5-18) by substitution. When a faulty component board is found, perform (1) through (3) below .

Note

If substitute component boards are not available, perform the following for each component board.
(1) Use extender board All to extend suspected component board in its slot. Remove suspected component board from its slot, insert extender in slot, and insert component board in extender. The component board is then electrically connected and mechanically supported with all components and test points accessible for troubleshooting.
(2) Refer to appropriate schematic diagram (see Section 5), and use an oscilloscope to observe each waveform shown.

Note

See apron of fold-out schematic diagrams for waveforms, voltages, and resistances.
(3) When an incorrect waveform is found, use a multimeter to measure the voltages and resistances of the logic stages associated with that output, to isolate trouble to a faulty component.

CAUTION

Read paragraph 5-5 (special repair data) before attempting disassembly.

4-3. OVER-ALL FUNCTIONAL DESCRIPTION (see figure 4-1 through 4-3).

Note
See paragraph 3-1 for simplified block diagram analysis.
a. INPUT CIRCUITS. - The INPUT SELECT switch adjusts the input select network to accept data signals of various modes and connects the LOOP CURRENT meter in series with the loop when the data signal is of high-level mode. The data signal is coupled through the input select network to key the electronic relay, which converts the data signal (of any mode) to a voltage mode acceptable by the delay and mixer network. The electronic relay also isolates the input select network and the external loop from the rest of the Analyzer circuitry. The delay and mixer neiwork distributes data signal MS to the SIG IND lamps, baud counter, transfer control, and time-base circuits - and to the SCOPE SIG connector for display on an external oscilloscope. Timing spikes from the distortion counter are superimposed on the data signal available at the SCOPE SIG connector.
b. TIME-BASE CIRCUITS. - The primary timing signal is generated by the crystal oscillator and then counted down to produce a timing signal rate of 200 times the signaling rate of the data signal under test (MS). Output of the down counter is coupled through the sync network, which halves the rate, to produce a timing signal (CTB) rate of 100 times the MS baud rate. The setting of the RATE BAUDS switch determines which of six crystals controls the oscillator and how many of seven stages are used in the down counter to produce CTB. Timing signal CTB is distributed to the transfer control and distortion counter circuits.

Paragraph
4-3c

UNCLASSIFIED
NAVSHIPS 0969-125-7010

TS-2616/UGM
TROUBLE SHOOTING
C. SYNCHRONOUS SIGNAL DISTORTION MEASUREMENT (see figure 4-1 and 4-3).
(1) SYNCHRONIZATION. - The distortion counter counts CTB and, therefore, counts to 100 each time an MS transition occurs. It counts from 50 to 0 to 50 , reaching 0 at the time of each possible MS transition. Each time the count reaches 0 , a pulse (N) is sent to the sync network in the time-base circuits. There, the time positions of the N transitions are compared with the time positions of the MS transitions. If the rate of CTB (as reflected by the time position of N) is higher than the rate of MS, pulses are removed from CTB. If the rate of $C T B$ is lower than the rate of $M S$, pulses are added to CTB. In this way CTB is synchronized with MS. (The removal or addition of a CTB pulse produces only a slight shift in the time position of N.)
(2) DISTORTION COUNT. - Each time a space-to-mark transition occurs in MS, the count in the distortion counter is 0, provided the MS transition is not distorted. If an MS transition occurs early or late, the count will be at some number between 0 and 50 ; the count will be numerically equal to the per cent of displacement of the MS transition. The transfer control circuits shift the count into the distortion register.
(3) TRANSFER CONTROL. - A pulse generator in the transfer control network is set each time a space-to-mark transition occurs in MS. The very next CTB transition resets the puise generator, producing a pulse. The pulse is gated with N, producing a transfer pulse (either ET or LT). If the MS transition is late, LT strobes the transfer gates. If the MS transition is early, ET strobes the transfer gates. In either case, the transfer gates parallel-shift the count from the distortion counter to the distortion register, where the count is stored until the next count is shifted in.
(4) DISTORTION READINGS. - When early transfer pulse ET initiates the shift, the distortion register lights the MARKING indicator lamp. When late transfer pulse LT initiates the shift, the distortion register lights the SPACING lamp. In either case, the meter drive network drives the PERCENT DISTORTION meter with a current that is proportional to the digital number stored in the distortion register.
(5) DISTORTION SELECT. - When the DISTORTION SEIECT switch is set to BIAS, each space-to-mark transition of MS initiates the transfer pulse (ET or LT). When the switch is set to TOTAL, EARLY, or LATE PEAK, the comparator gates inhibit the transfer pulse except when the count in the distortion counter is greater than the count stored in the distortion register. When the switch is set to EARLY PEAK, LT is inhibited. When the switch is set to LATE PEAK, ET is inhibited.
(6) PEAK RESET. - When the PEAK RESET switch is set to AUTO, the reset timer resets the distortion register to 0 every five seconds.. When the PEAK RESET switch is set to OFF, the operator can reset the distortion register at any time by momentarily setting the PEAK RESET switch to MAN.
d. START-STOP SIGNAL MEASUREMENT (see figure 4-2 and 4-3).
(1) SYNC NETWORK. - For measuring start-stop signals, the Analyzer functions the same as described above for synchronous signal measurement, except that the sync network is not used to synchronize MS with CTB. The baud counter circuits perform that function. (For synchronous signal measurement, the baud counter circuits serve only to provide a sync signal for an external oscilloscope.)
(2) START-STOP SYNC. - The baud counter circuits synchronize CTB with the first transition of each start element of MS as described below. The baud counter counts N (occurring at the bit rate of MS) to produce four signals: $\overline{\mathrm{RST}}, \mathrm{SC}, \mathrm{ST}$, and $\overline{\mathrm{XS}}$. $\overline{\mathrm{RST}}$ resets the distortion counter to zero at the first transition of each start element. Distortion measurement then proceeds the same as for synchronous signals until the stop element arrives. At this time SC inhibits CTB and enables it again at the first transition of the next start element. ST inhibits the transfer control network during the period of the start element. At the first transition of the start element, $\overline{\operatorname{RST}}$ resets the distortion counter and distortion measurement again proceeds.
(3) TRANSITION SELECT. - When the TRANSITION SELECT switch is set to ALL, control signal $\overline{X S}$ supplies a constant enable to the transfer control network. When the switch is set to any of positions 1 through 9 (corresponding to the nine time-intervals following the start element), control signal $\overline{\mathrm{XS}}$ supplies an enable to the transfer control network only during that particular time interval of each character. (One MS transition occurs at about the center of each interval.)
(4) CODE LEVEL. - The CODE LEVEL switch is set to $\mathrm{S} / \mathrm{S} 5$ or $\mathrm{S} / \mathrm{S} 8$ to adjust the baud counter circuits to accommodate either 5- or 8-element characters. When set to SYNC, the four control signals (SC, ST, $\overline{R S T}$, and $\overline{X S}$) have no effect.

Figure 4-1. Over-All Synchronous Timing Chart

Figure 4-2. Over-All Start-Stop Timing Chart

$(\mathrm{C} \longrightarrow \mid=1 \mathrm{~A} \longrightarrow)$ (百)

ARROW INDICATES THAT
A NEGATIVE TRANSITION
IS REQUIRED AT A TO
PERFORM LOGIC FUNCTION.

ARROW INDICATES THAT A NEGATIVE TRANSITION AT I-INPUT WILL SET BISTABLE (LOW AT 1-OUTPUT). A NEGATIVE TRANSITION AT O-INPUT WILL RESET BISTABLE (LOW AT O-OUTPUT).

Figure 4-4. Graphic Symbols

Figure 4-5. Delay Filter Timing

4-4. LOGIC ANALYSIS.

Note

All circuits in this functional section are standard logic or electronic circuits for which detailed descriptions may be found in the Handbook of Electronic Circuits, NAVSHIPS 900,000.102.
a. GENERAL. - Paragraphs c through h describe in detail the logic analysis of each of the six major circuit areas of the Analyzer: input circuits, time-base circuits, distortion counter circuits, distortion register circuits, baud counter circuits, and transfer control circuits.
b. LOGIC DEFINITIONS.
(1) +6 and +15 volts $=$ logical- 0 (high-level).
(2) Zero volt (ground) and -15 volts = logical-1 (low-level).
(3) Graphic symbols used are explained in MIL-STD-806B, with the exception of those shown in figure 4-4.

Figure 4-6 Down Counter Timing

Figure 4-7. Sync Network Timing

Figure 4-8. Distortion Counter Decade Timing

Figure 4-9. Distortion Counter Timing
c. INPUT CIRCUITS (see figure 4-5 and 4-12).
(1) INPUT SELECT NETWORK. - The data signal is coupled through the LO-Z or HI-Z jack, INPUT POLARITY switch, and INPUT SELECT switch to key electronic relay Al4.
(a) The INPUT POLARITY switch permits reversal of data signal sense.
(b) R1, R2, R3, C6, and C7 provide rfi filtering.
(c) The INPUT SELECT switch adjusts input impedance to match various data signal modes to the electronic relay. Resistor A13R3 shunts the loop for 20- and 30 -milliampere signals, Al3R3 shunts the loop for 60 -milliampere signals, and A13R1 is connected in series with the loop for high-impedance signals. The switch also connects the LOOP CURRENT meter in series with the loop for 20-, 30-, and 60 -milliampere signals.
(d) The electronic relay converts any of the data signal modes to a voltage mode (IC and $\overline{\mathrm{IC}}$) acceptable by the delay and mixer network.
(2) DELAY AND MIXER NETWORK. - At data signal rates of not more than 75 bauds, INPUT FILTER switch 57 may be set to IN, to remove transients (from data signal $\overline{\mathrm{IC}}$) whose durations do not exceed two milliseconds.
(a) When set to OUT, S7 enables G8 and disables G6, so that IC is coupled through $G 8$ and $G 7$, and so that the $M B-1$ output is stopped at $G 6$. Since $G 6$ is disabled, its output enables G7 to invert IC, which becomes data signal MS. Inverter IN-1 inverts MS to produce $\overline{\mathrm{MS}}$.
(b) When set to IN, S7 disables G8 and enables G6, so that $\overline{\text { IC }}$ is stopped at G8, and so that the output of MB-1 is coupled through G6. Since G8 is disabled, its output enables G7, which therefore inverts the MB-1 output to become signal MS. Output of $\mathrm{MB}-1$ is a delayed replica of $\overline{\mathrm{IC}}$; delayed $\overline{\mathrm{IC}}$ does not contain transients experienced by $\overline{\mathrm{IC}}$, due to action of the delay filter, which functions as described below (see figure 4-5).

(1) transition select switch set to all.
(2) transition select switch set to 6 .

Figure 4-10. Baud Counter Timing

Figure 4-11. Transfer Pulse Generator Timing

1 Each negative transition of IC is coupled through G2 and G3 to start the timer. Each negative transition of $\overline{\mathrm{IC}}$ is coupled through G1 and G3 to start the timer. Two milliseconds after each IC transition, therefore, the timer produces a negative transition output.
$\underline{2}$ When IC is high, $\overline{I C}$ enables G4 to pass the timer transition to set MB-1. When IC is low, it enables G5 to pass the timer transition to reset MB-1. Output of MB-1 therefore produces a delayed replica of $\overline{I C}$.

3 If IC experiences a transient, the transient initiates an extra timer transition, but, delayed by two milliseconds, the transient is not able to change the state of $\mathrm{MB}-1$.

EXAMPLE

Consider the transient shown in figure 4-5. The extra timer transition (delayed by two milliseconds) cannot pass through G4 to set MB-1, because $\overline{\mathrm{IC}}$ is high at that instant. Note that if the transient endures for more than two milliseconds, $\overline{\mathrm{IC}}$ would be low, so $\mathrm{MB}-1$ would be toggled.
(3) SPIKE MIXER NETWORK. - Timing spikes H, I, J, K, L, and M are coupled through $G 9$ when the TRANSITION MARKERS switch is set to $I N$. The spikes (from the distortion counter) occur at the ideal transition points (of MS) and are superimposed on MS at G10. The output of Gl0 is coupled to the SCOPE SIG connector. Spike duration is two per cent of one unit internal; spike amplitude is about 0.4 volt.
(4) SIGNAL INDICATOR LAMPS. - Data signal MS and $\overline{M S}$ are connected through IN-11 and IN-12, respectively, to drive the SIG IND-M and SIG IND-S indicator lamps, respectively. When MS goes high (mark condition), IN-11 lights SIG IND-M; when $\overline{\mathrm{MS}}$ goes high (space condition), IN-12 lights SIG IND-S.
d. TIME-BASE CIRCUITS (see figure 4-6, 4-7, and 4-12).
(1) CRYSTAL OSCILLATOR. - Determined by the setting of RATE BAUDS switch S3, the oscillator frequency is controlled by one of six crystals. Oscillator output is coupled through four shaper/buffer stages (IN-2, $-3,-4$, and -5) to the down counter, which divides the crystal frequency by a factor that produces a timing signal whose rate is 200 times the particular baud rate to which the RATE BAUDS switch is set.
(2) DOWN COUNTER (see figure 4-6). - The down counter (bistables $\mathrm{MB}-2$ through -8) divides the selected crystal frequency by a factor (see table 4-1) required to produce an output rate of 200 times the baud rate of the data signal (MS) under test. Depending on the RATE BAUDS switch setting, one, two, three, four, five, six, or seven bistables are used in the down count. At four settings ($50,56.8,61.1$, and 110) of the RATE BAUDS switch, MB-5 and MB-6 are implemented to divide by 3 (instead of the normal divide-by-4). When the RATE BAUDS switch is set to $50,56.8,61.1$, or $110(\overline{3})$, the l-output of MB-6 is connected to IN-6 and G26. When the switch is set to any other position ($\dot{4}$), the 1-output of MB-5 connects to G26 and IN-6.

TABLE 4-1. TIMING SIGNAL FREQUENCIES

CRYSTAL	$\begin{gathered} \text { CRYSTAL } \\ \text { FREQ } \\ \text { (KHZ) } \end{gathered}$	RATE BAUDS SWITCH SETTING	$\begin{gathered} 200 \\ \text { TIMES } \\ \text { BAUD } \\ \text { RATE } \\ \text { (KHZ) } \end{gathered}$	DOWN COUNT FACTOR	NUMBER OF DOWNCOUNT STAGES USED	$\begin{gathered} \text { DIVIDE- } \\ \text { BY-3 } \\ \text { USED } \end{gathered}$
Y1	1164.80	45.5	9.10	128	7	
Y2	949.76	74.2	14.84	64	6	
Y3	960.00	37.5	7.5	128	7	
		50	10	96	7	*
		75	15	64	6	
		150	30	32	5	

TABLE 4-1. TIMING SIGNAL FREQUENCIES (Cont'd)

CRYSTAL	$\begin{aligned} & \text { CRYSTAL } \\ & \text { FREQ } \\ & \text { (KHZ) } \end{aligned}$	$\begin{aligned} & \text { RATE } \\ & \text { BAUDS } \\ & \text { SWTTCH } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \hline \text { 200 } \\ & \text { TIMES } \\ & \text { BAUD } \\ & \text { RATE } \\ & \text { (KHZ) } \end{aligned}$	DOWN COUNT FACTOR	NUMBER OF DOWNCOUNT stages USED	$\begin{aligned} & \text { DIVIDE- } \\ & \text { BY-3 } \\ & \text { USED } \end{aligned}$
		300	60	16	4	
		600	120	8	3	
		1200	240	4	2	
		2400	480	2	1	
Y4	1056.00	110	22	48	6	*
Y5	1090.56	56.8	11.36	96	7	*
Y6	1173.12	61.1	12.22	96	7	*

(3) SYNC NETWORK (see figure 4-7). - The primary function of the sync network is to synchronize phase and frequency of timing signal CTB with data signal MS during synchronous operation.
(a) The 200-times-baud signal from the down counter is coupled through IN-9 and IN-7 to monostables MM-1 and MM-2. At each negative transition of the 200 times baud signal, MM-2 generates a pulse ($\overline{\mathrm{PH}} \overline{\mathrm{A}})$; at each positive transition, MM-1 generates a pulse ($\overline{\mathrm{PHB}}$).
(b) The negative transition of pulses $\overline{\mathrm{PHA}}$ are coupled through gate G30 to toggle $\mathrm{MB}-11$, whose output becomes the 100 -times-baud signal, CTB. Inverters $\operatorname{IN}-8$ and IN-10 produce CTBl and CTBI.
(c) Gate G30 is able to pass PHA because the 1 -output of $\mathrm{MB}-10$ is normally high; signal $\overline{\text { PHA }}$ does not toggle $M B-10$ because the 1 -output of $M B-10$ is normally high, and therefore disables G35.

1 For start-stop operation, SC is normally high; however, SC goes low during each stop element of data signal MS, thus inhibiting CTB during the stop element. For start-stop operation, the sync network serves no other purpose.
(d) Gate G29 is unable to pass PHB because the 0 -output of MB-9 is normally low; signal $\overline{\mathrm{PFB}}$ does not toggle $\mathrm{MB}-9$ because the 1 -output of $\mathrm{MB}-9$ is normally high and therefore disables G28.
(e) With the CODE LEVEL switch set to SYNC, the lower input to G33 is at a constant hign, thus enabling G33 to pass MS to the inputs of $\mathrm{MB}-9$ and $\mathrm{MB}-10$.
(f) Each negative transition of MS toggles either MB-9 or MB-10, depending on the levels of N and \bar{N}.

Note

The negative transitions of \bar{N} occur at the bit rate of MS and should occur at the time of MS transitions. If CTB rate is higher than MS rate, $\overline{\mathrm{N}}$ transitions occur early. If CTB rate is lower than MS rate, $\overline{\mathrm{N}}$ transitions occur late.
(g) If the $\overline{\mathrm{N}}$ transition is advanced with respect to its corre sponding MS transition, $\overline{\mathrm{N}}$ is low (enabling G34) when the MS transition occurs. Bistable MB-10 is therefore toggled by the negative MS transition from G33. The 1 -output of $\mathrm{MB}-10$ goes low and disables G30. Since the next PHA pulse cannot pass through G30 to toggle $M B-11$, a pulse is removed from CTB. Signal $\overline{P H A}$ does toggle $M B-10$, however, to enable G30 to pass the next PHA pulse.
(h) If the $\overline{\mathrm{N}}$ transition is delayed with respect to its corresponding MS transition, N is low when the $M S$ transition occurs. Bistable MB-9 is therefore toggled by the negative MS transition from G33. As a result, the 0-output of MB-9 goes high, enabling G29, so that the next $\overline{\mathrm{PHB}}$ pulse passes through G 29 to toggle $\mathrm{MB}-11$, adding a pulse to CTB. Signal $\overline{P H B}$ does toggle $M B-9$, however, thus disabling $G 29$ before the next $\overline{\mathrm{PHB}}$ pulse occurs.
e. DISTORTION COUNTER CIRCUITS (see figure 4-8, 4-9, and 4-12).
(1) TIMING SIGNAL N. - The distortion counter consists of two decade counters (MB-19 through MB-22, and MB-23 through MB-26). The first is stepped by CTB at 100 times the bit rate of the data signal (MS) under test. The second is stepped by the output of the first decade counter, at ten times the bit rate of MS. The output (N and \bar{N}) of the second decade counter is a timing signal whose negative transitions occur at the bit rate of MS.
(2) DISTORTION COUNT. - The distortion counter counts from 50 to 0 to 50 for each transition of MS. Both decade counters repeatedly count from 0 to 9 . The first counts CTB, and the second counts each ninth count of the first decade counter.
(3) UNITS AND TENS. - The coded binary output ($\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}$,) of the first decade counter denotes the units decimal-digit of the count. The coded binary output ($\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$) of the second decade counter denotes the tens decimal-digit of the count.
(4) WEIGHTING. - The coded decimal notation of the coded binary outputs of both decade counters is 2-4-2-1 instead of the normal 8-4-2-1 (see table 4-2 and figure 4-8). The 2-4-2-1 weighting is implemented by gates G86 (first decade counter) and G97 (second decade counter). In the first decade counter, for example, at count $4, G, \bar{I}$, and J are gated at G86 to produce a pulse whose negative transition sets $M B-20$ and resets $\mathrm{MB}-21$, which sets $\mathrm{MB}-22$.
(5) COUNT TRANSFER (see figure 4-9). - The count in the counter at the time of each MS transition is shifted into the distortion register circuits. The count at the time of an MS transition is numerically equal to the per cent of distortion in that transition. If the displacement is late, the true (l-outputs) coded binary outputs are shifted. If the displacement is early, the complement (0 -outputs) coded binary outputs are shifted. In either case, the count reaching the distortion register is of the same sense, the reason
being that the 50 -to- 0 count appears on the 0 -outputs of the bistables, and the 0 -to- 50 count appears on the l-outputs.
(6) TIMING SIGNAL RST. - During start-stop operation only, an $\overline{\text { RST }}$ pulse (from the baud counter circuits) resets the distortion counter to 0 at the beginning of each start element.
(7) EXTRA COUNT.- In figure 4-9, note that the count changes from 49 to 49, skipping 50. Since the second 49 count is initiated by the 50 th count, all counts between 49 and 0 register 1 count short. In other words, for 20 per cent early distortion, counter output would register 19 per cent. An extra count (generated by the extra-count generator) is therefore applied directly to the distortion register circuits. Bistable $\mathrm{MB}-27$ is set by ET and reset by LT.

Note

Signal ET occurs when an MS transition occurs early. Signal LT occurs when an MS transition occurs late.

For an MS transition that occurs early, the count in the distortion counter is shifted into the distortion register by ET, which also sets MB-27; when $\mathrm{MB}-27$ is set, its 0 -output is inverted by IN-20 to produce the extra count (XC), which is coupled to the PERCENT DISTORTION meter. For an MS transition that occurs late, the count in the distortion counter is shifted into distortion register by LT, which also resets MB-27, thus removing the extra count from the meter. When measuring peak distortion, $\overline{M R T}$ resets $\mathrm{MB}-27$ at the same time that it resets the distortion register circuits.

TABLE 4-2. WEIGHTING

8-4-2-1 WEIGHTING					$2-4-2-1$ WEIGHTING*				
COUNT	8	4	2	1	COUNT	2	4	2	1
$0=$	0	0	0	0	$0=$	0	0	0	0
$1=$	0	0	0	1	$1=$	0	0	0	1
$2=$	0	0	1	0	$2=$	0	0	1	0

*The counter counts as an ordinary binary counter, with $8-4-2-1$ weighting until count 4. Then gating inverts count 4 to produce count 5 (2-4-2-1 weighting). The counter then again counts as an ordinary binary counter.

TABLE 4-2. WEIGHTING (Cont'd)

$8-4-2-1$ WEIGHTING								$2-4-2-1$ WEIGHTING*				
COUNT	8	4	2	1	COUNT	2	4	2	1			
$3=$	0	0	1	1	$3=$	0	0	1	1			
$4=$	0	1	0	0	$4=$	0	1	0	0			
$5=$	0	1	0	1	$5=$	1	0	1	1			
$6=$	0	1	1	0	$6=$	1	1	0	0			
$7=$	0	1	1	1	$7=$	1	1	0	1			
$8=$	1	0	0	0	$8=$	1	1	1	0			
$9=$	1	0	0	1	$9=$	1	1	1	1			

*The counter counts as an ordinary binary counter, with 8-4-2-1 weighting until count 4. Then gating inverts count 4 to produce count 5 (2-4-2-1 weighting). The counter then again counts as an ordinary binary counter.
f. DISTORTION REGISTER CIRCUITS (see figure 4-12).
(1) GENERAL. - The distortion register accepts any binary coded count from the distortion counter and converts it to a proportional current magnitude to deflect the PERCENT DISTORTION meter to indicate the decimal equivalent of the count.
(2) LATE DISTORTION.- Assume that an MS transition occurs 21 per cent late. At that instant, the binary coded outputs of the distortion counter would be as follows (see figure 4-8 and 4-9):

FIRST DECADE COUNTER $\begin{cases}\left\{\begin{array}{ll}G & \text { low } \\ H & \text { high } \\ I & \text { high } \\ J & \text { high }\end{array}\right\}=1\end{cases}$
SECOND DECADE COUNTER $\left\{\begin{array}{ll}\mathrm{K} & \text { high } \\ \mathrm{L} & \text { low } \\ M & \text { high }\end{array}\right\}=2$
(a) Since G and L are low and the MS transition occurred late, late transfer pulse LT is coupled through transfer gates G100 and G120 to set bistables MB-28 and MB-33.
(b) Since $\overline{\mathrm{H}}, \overline{\mathrm{I}}, \overline{\mathrm{J}}, \overline{\mathrm{K}}$, and $\overline{\mathrm{M}}$ are low, LT is coupled through transfer gates Gl06, G110, G114, G118, and G126 to reset bistables MB-29, MB-30, MB-31, MB-32, and $\mathrm{MB}-34$.
(c) The highs at the 0 -outputs of MB-28 and MB-33 are inverted by IN21 and IN26. The resultant lows at the outputs of IN21 and IN26 supply current through limiting resistors A8R16 and A9R31. The sum of the two currents deflects the PERCENT DISTORTION meter to indicate 21 per cent.
(3) EARLY DISTORTION.- Assume that an MS transition occurs 21 per cent early. At that instant, the binary coded output of the distortion counter would be one count short, as follows (see figure 4-8 and 4-9):
FIRST DECADE COUNTER $\left\{\begin{array}{ll}G & \text { low } \\ H & \text { low } \\ I & \text { low } \\ \mathrm{J} & \text { low }\end{array}\right\}=0$
SECOND DECADE COUNTER $\left\{\begin{array}{ll}\mathrm{K} & \text { low } \\ \mathrm{L} & \text { high } \\ M & \text { low }\end{array}\right\}=2$
(a) Since $\overline{\mathrm{L}}$ is low and the MS transition occurred early, early transfer pulse ET is coupled through transfer gate Gl2l to set bistable MB-33.
(b) The resultant high at the 0-output of MB-33 is inverted by IN2 6 to supply current through A9R31 to deflect PERCENT DISTORTION meter MI to indicate 20 per cent. The extra-count generator, however, provides the extra current required to increase the meter deflection to the correct indication of 21 per cent distortion (see paragraphe (7)).
(4) SPACING AND MARKING LAMPS.- Bistable MB-35 sets or resets to light the MARKING or SPACING indicator lamp. If, for example, end distortion is being measured and an MS mark-to-space transition occurs late, LT gates with MS to set $\mathrm{MB}-35$, whose 0 -output thus goes high to light the MARKING indicator lamp. If the MS transition occurs early, ET gates with MS to reset MB-35 to light the SPACING indicator lamp. When measuring bias distortion, EI gates with MS to set MB-35, lighting the MARKING indicator lamp, or LT gates with MS to reset MB-35, lighting the SPACING indicator lamp.
(5) PEAK RESET.- Every peak reset signal MRT resets bistables MB-28 through MB-35. The reset timer circuit generates the reset pulse MRT. Astable MA-1, when energized by setting the PEAK RESET switch to AUTO, produces a pulse every five seconds; this pulse is coupled through inverter IN-19 to trigger monostable MM-3, which produces the MRT pulse.
g. BAUD COUNTER CIRCUITS (see figure 4-10 and 4-12).
(1) BAUD COUNTER.- The baud counter (MB-12 through MB-15) counts the negative transitions of timing signal N (bit rate of MS from the distortion counter). The binary-coded count appears at the 1-outputs of $\mathrm{MB}-12, \mathrm{MB}-13, \mathrm{MB}-14$, and $\mathrm{MB}-15$; these outputs are applied to gate G49 via the CODE LEVEL switch and three inverters as described in (a) through (c) below.
(a) With the CODE LEVEL switch set to 5 (TRANSITION SELECT switch set to ALL), the 1-outputs of MB-12 and MB-15 are applied directly to G49, and the 1-outputs of MB-13 and MB-14 are applied to G49 through inverters IN-14 and IN-15. When the binary count reaches 6 (shortly after the first transition of the MS stop element), all gate G49 inputs are high, causing the output (SC) to go low. With SC low gate, G50 is enabled. The first transition of the next MS start element then passes through G50 to become reset pulse $\overline{\mathrm{RST}}$, which sets the baud counter. When the baud counter is set, all its l-outputs go low, causing SC to go high, which disables G50 until the count again reaches 6 . Once set, the counter is reset by the next negative transition of N, and the count begins again.
(b) With the CODE LEVEL switch set to 8 (TRANSITION SELECT switch set to ALL), the 1-output of. MB-12 is applied through IN-13 to G49, the 1-outputs of MB-13 and $\mathrm{MB}-14$ are applied directly to G 49 , and the 0 -output of $\mathrm{MB}-15$ is applied to G 49 . When the binary count reaches 9 , all inputs to $G 49$ go high causing SC to go low. When SC goes low (shortly after the first transition of the MS stop element), it enables G50. The first transition of the MS start element passes through G50 to become RST, which sets the counter. The next negative transition of N resets the counter and the count again begins.
(c) With the CODE LEVEL switch set to SYNC, S2A grounds one input to G49, thus locking SC at the high level.
(2) TRANSITION SELECT.- Gates G45 and G46 produce signal XS; this signal, when high, enables the transfer control circuits. Signal XS is high only when all inputs to gate G45 are low. When the TRANSITION SELECT switch is set to ALL, the four inputs to G45 are grounded so that $\overline{\mathrm{XS}}$ is high at all times. For the other nine settings of the TRANSITION SELECT switch, the four inputs to G45 will be low only during the unit interval of the selected transition. The setting of TRANSITION SELECT switch S4 determines which outputs of the baud counter bistables connect to G45 and which of inverters IN-13, IN-14, and IN-15 are implemented.
(3) STOP SIGNAL STI.- Signal STI goes high to inhibit the transfer control circuits during part of each stop and start element of MS (see figure 4-10). With the CODE LEVEL switch set to 5 or 8 (for start-stop operation), one input to G44 is at a constant high; gate G44 therefore inverts its other input, $\overline{\mathrm{ST}}$. Output of G44 (ST1) thus follows the output of G48 (ST), which goes low during part of each stop and start element of MS. At all other times G48 has two high inputs, SC and the output of G47. Shortly after the first transition of the stop element, SC goes low, causing ST to go low. SC goes high at the first transition of the start element, however; at the same instant, $\overline{\mathrm{RST}}$ sets the counter, whose 0 -outputs cause the output of G47 to go low, so that ST remains low. The next negative transition of N resets the counter, causing the output of G47 to go high, which causes ST to go high.

Note

When the CODE LEVEL switch is set to SYNC, one input to G44 is at a constant low, thus locking STl at a constant high.
h. TRANSFER CONTROL CIRCUITS (see figure 4-11 and 4-12).
(1) PULSE GENERATOR.- The pulse generator produces a pulse at the time of (a) each MS transition, (b) each mark-to-space transition, or (c) each space-to-mark transition. Which MS transitions do initiate pulses are determined by the settings of the CODE LEVEL switch and the DISTORTION SELECT switch.
(a) START-STOP.- For start-stop operation, CODE LEVEL switch S2 is set either to 5 or 8 , which connects the input of gate G51 to the output of the DISTORTION SELECT switch Sl.

I PEAK. - When set to one of its three PEAK positions, Sl applies two lows to enable gates G5l and G52. Each negative MS transition and each negative $\overline{\mathrm{MS}}$ transition is coupled through G51 and G52 to set bistable MB-16. Bistable MB-16 is therefore set at each transition of MS. Every time MB-16 is set, its 1-output enables gate G54, permitting the next negative transition of $\overline{C T B l}$ to set $M B-17$; the next negative transition of CTBI then resets $\mathrm{MB}-17$ and $\mathrm{MB}-16$. Consequently, the 0 output of $\mathrm{MB}-$ 17, produces a positive transfer pulse (PT) each time an MS transition occurs.
$\underline{2}$ BIAS.- When set to BIAS, Sl applies a low to G52 and a high to G51. Since G51 is thus disabled, a transfer pulse (PT) is generated only for each space-to-mark transition of MS.

3 END.- When S1 is set to END, G52 is disabled and G51 is enabled. Transfer pulse PT is thus generated only for each mark-to-space transition of MS.
(b) SYNCHRONOUS.- For synchronous operation, CODE LEVEL switch S2 is set to SYNC, thus connecting a high to disable G51. Transfer pulse PT is thus generated only for each mark-to-space transition of MS. Note that, if Sl were set to END, both G51 and G52 would be disabled and no transfer pulses would be generated.
(2) COMPARATOR GATES.
(a) The comparator gates compare the count stored in the distortion register with the changing count in the distortion counter. When the two counts become equal, bistable MB-18 is set, causing $\overline{G R}$ to go hich. When the two counts become opposite (complementary). MB-18 is reset, causing $\overline{\mathrm{GR}}$ to go low.
(b) Bistable MB-18 is set by a negative transition of CTB1 when gate G73 is enabled by a low from the output of gate G72. Gate G72 produces the required low only when none of gates G58 through G64 has two lows applied to it. This condition is satisfied only when the count in the distortion counter is equal to the count in the distortion register. When the two counts are equal, the coded binary levels at l-outputs P, Q, R, S, T, U, and V of the register are the complement of the coded binary levels at the corresponding 0-outputs $\overline{\mathrm{G}}, \overline{\mathrm{H}}, \overline{\mathrm{I}}, \overline{\mathrm{J}}, \overline{\mathrm{K}}, \overline{\mathrm{L}}$, and M of the counter. All of gates G58 through G64 therefore supply high outputs to gate G128, causing it to produce a low output.
(c) Bistable $\mathrm{MB}-18$ is reset by a negative transition of $\overline{\mathrm{CTBl}}$ when gate G 75 is enabled by a low from the output of G74. Gate G74 produces the required low only when none of gates G65 through G71 has two lows applied to it. This condition is satisfied only when the count in the distortion counter is the complement of the count in the distortion register. When the two counts are opposite, the coded binary levels at 0 -outputs $\bar{P}, \bar{Q}, \bar{R}, \bar{S}, \bar{T}, \bar{U}$, and \bar{V} of the register are the complement of the coded binary levels at the corresponding 0 -outputs G, $\overline{\mathrm{H}}, \overline{\mathrm{I}}, \overline{\mathrm{J}}, \overline{\mathrm{K}}, \overline{\mathrm{L}}$, and $\overline{\mathrm{M}}$ of the counter. All of gates G65 through G7l therefore supply highoutputs to gate G74, causing it to produce a low output.
(3) TRANSFER GATES.- Transfer pulse PT is gated through G56 or G57 to become transfer pulse ET or LT, respectively.
(a) EARLY TRANSFER PULSE ET.- If PT occurs early, \bar{N} is high, permitting PT to pass through G56 to become early transfer pulse ET (N is low, thus disabling G57) .
(b) LATE TRANSFER PULSE LT.- If PT occurslate, N is high, permitting PG to pass through G57 to become late transfer pulse LT (N is low, thus disabling G 56).
(c) END AND BIAS MEASUREMENT.- When DISTORTION SELECT switch S1 is set to END or BIAS, pin 7 of SIA applies highs to enable G56 and G57.
(d) PEAK MEASUREMENT. - When Sl is set to one of its three PEAK positions, $\overline{G R}$ is applied to $G 56$ and $G 57$ (GR must then be high to enable G56 and G57) .
(e) TOTAL PEAK MEASUREMENTS.- When Sl is set to TOTAL, pins 3 and 6 of SIA apply highs to enable G57 and G56, respectively.
(f) EARLY PEAK MEASUREMENTS.- When Sl is set to EARLY, pin 5 of SIA applies a low to disable G57 (permitting only early transfer pulses (ET) to be initiated).
(g) IATE PEAK MEASUREMENTS.- When Sl is set to LATE, pin 6 of SIA applies a low to disable G56 (permitting only late transfer pulses (LT) to be initiated).

[^0]MAJOR LOGIC SIGNALS

LOGIC SIGNAL	NAME	ORIGIN	DESTINATION AND FUNCTION
MS, MS	Data signal (under test)	Delay and mixer network	Lamp drivers, A3, to light SIG IND-S and SIG IND-M lamps. Sync network, A3, to synchronize timing signal CTB, CTB1, and CTB1 with MS. Baud counter, A.5, to \qquad initiate reset pulse RST. Transfer control, A7, to initiate transfer pulse ET and LT. Transfer gates, A9, to light SPACING and MARKING lamps.
$\frac{\mathrm{CTB}}{\mathrm{CTBI}}, \mathrm{CTB1}$	$\begin{aligned} & \text { Timing signal } \\ & \text { (100 } \mathrm{x} \text { baud } \\ & \text { of } \mathrm{MS} \text {) } \end{aligned}$	Sync network, A3	Transfer control, A7, to synchronize transfer pulse ET and LT. Distortion counter, A6, to step counter.
$\mathrm{N}, \overline{\mathrm{N}}$	Timing signal ($1 \times$ baud of MS)	Distortion counter, A6	Transfer control, A7, to select either ET or LT. Baud counter, A5, to step counter. Sync network, A3, to sync MS with CTB during synchronous operation.
ET	Early transfer	Transfer control, A7	Transfer gates, A8 and A9, to transfer early distortion count from distortion counter, A6, to distortion register, $A 8$ and $A 9$, and to light MARKING and SPACING lamp. Extra count generator, A2, to initiate extra count XC.
LT	Late transfer	Transfer control, A7	Transfer gates, A8 and A9, to transfer late distortion count from distortion counter, A6, to distortion register, $A 8$ and $A 9$, and to light MARKING or SPACING lamp. Extra count generator, A2, to disable extra count XC.

LOGIC SIGNAL	NAME	ORIGIN	DESTINATION AND FUNCTION
$\overline{\mathrm{RST}}$	Reset	Baud counter, A5	Distortion counter, A6, to reset counter and to baud counter, A5, to set counter (to sync counters for start-stop operation).
ST1 (ST)	Stop transfer	Baud counter, A5	Transfer control, A7, to prevent distortion count transfer between characters during start-stop operation.
SC	Stop count	Baud counter, A5	Sync network, A3 to sync MS with CTB during startstop operation.
$\overline{X S}$	Transition select	Baud counter, A5	Transfer control, A7, to disable distortion count transfer except during time of selected transition(s), for start-stop operation.
XC	Extra count	Extra count generator, A2	PERCENT DISTORTION meter, to provide extra 1 per cent deflection for early distortion readings.
MRT	Manual/Auto reset	Reset timer, A2	Distortion registers, A8, A9, to reset stored count to zero.
$\begin{aligned} & \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \\ & \mathrm{~K}, \mathrm{~L}, \text { and } \\ & \mathrm{M} \\ & \overline{\mathrm{G}}, \overline{\mathrm{H}}, \overline{\mathrm{I}}, \overline{\mathrm{~J}}, \end{aligned}$	Distortion count	Distortion counter, A6	Distortion register, A8 and A9, to store count in register to be converted to meter drive current.
$\frac{\mathrm{K}, \mathrm{I}}{\mathrm{M}} \text {, and }$			Delay and mixer network, A4, to provide timing spikes for external oscilloscope display. Comparator gates, A7, to be compared with stored count for peak distortion measurement.
$\begin{aligned} & \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{~S}, \\ & \mathrm{~T}, \mathrm{U}, \text { and } \\ & \overline{\mathrm{V}}, \overline{\mathrm{Q}}, \overline{\mathrm{R}}, \overline{\mathrm{~S}} \\ & \overline{\mathrm{~T}}, \overline{\mathrm{U}} \text {, and } \end{aligned}$	Stored distortion count	Distortion register, A8 and A9	Comparator gates, A7, to be compared with distortion count for peak distortion measurement.

 1

SECTION 5

MAINTENANCE

5-1. FAILURE, AND PERFORMANCE AND OPERATIONAL REPORTS.

Failure Reports and Performance and Operational Reports shall be submitted in accordance with existing directives.

5-2. PREVENTIVE MAINTENANCE.
a. OPERATOR'S PROCEDURE.- Perform the following each day the Analyzer is in use.
(1) Clean front panel, front cover, and case with a soft, lint-free cloth. Dampen cloth with Cleaning Compound (Federal Stock No. 7930-395-9542) as required, and wipe panel dry with a clean cloth.
(2) Check to see that the three spare fuses (1 ampere, $1 / 8$ ampere, and $1 / 2$ ampere) are affixed inside front cover.
(3) Inspect power cord and plug for damaged insulation, and clean as required.
(4) Inspect meters for loose or damaged windows.
(5) Check that all switches operate smoothly without binding. All knobs should be secure to their shafts and should align properly with panel markings.
b. TECHNICIAN'S PROCEDURE.- Every 90 days, perform the operational checks (paragraph 5-3). Every 30 days, perform the adjustment procedure (paragraph 5-4) to insure the specified measuring accuracy of the unit. Correct any malfunction revealed. See Section 4 for trouble shooting procedures and refer to figures 5-1 through 5-26 as necessary.

5-3. OPERATIONAL CHECKS.
a. START-STOP PROCEDURE.
(1) Energize Analyzer and allow a 10 minute warmup.
(2) Set controls as follows:
(a) INPUT SELECT, NEUTRAL 60MA.
(b) INPUT POLARITY, (+).
(c) INPUT FILTER, OUT.
(d) PEAK RESET, OFF.
(e) TRANSITION MARKERS, OUT.
(f) CODE LEVEL, S/S 8.
(g) RATE BAUDS, 37.5.
(h) TRANSITION SELECT, ALL.
(i) DISTORTION SEIECT, END.
(3) Use a distortion generator to apply a test signal (60-milliampere neutral, 37.5 baud, 8 -level message, 40 per cent marking end distortion) to the LO-Z jack.
(4) Set test signal to steady mark. Check that LOOP CURRENT meter indicates 60 milliamperes, SIG IND-M indicator lamp lights, but SIG IND-S indicator lamp does

Figure 5-1. Test Set, Telegraph TS-2616/UGM, Parts Locations

Note

If SIG IND-M indicator lamp does not light, set INPUT POLARITY switch to (-).
(5) Set test signal to steady space. Check that LOOP CURRENT meter indicates 0 , SIG IND-S indicator lamp lights, but SIG IND-M indicator lamp does not.
(6) Set test signal to start-stop mode. Check that both indicator lamps light.
(7) Connect an oscilloscope to SCOPE SIG, SCOPE SYNC, and SCOPE GRD connectors, and check that test message is displayed on oscilloscope.
(8) Set TRANSITION MARKERS switch to IN. Check that spikes (-4 -volt amplitude) appear at ideal transition points of test message display, and that test message transitions are displaced from spikes by 40 per cent of one unit interval, delayed.
(9) Check that PERCENT DISTORTION meter indicates 40 per cent, and that MARKING indicator lamp is lighted.
(10) Adjust test signal, and set RATE BAUDS switch to $45.5,50,61.1,75$, $150,300,600,1200$, and 2400 bauds, inturn. Check that, at each setting, the PERCENT DISTORTION meter indicates 40 per cent.
(11) Adjust test signal, and set RATE BAUDS switch to 37.5 bauds.
(12) Adjust test signal, in 1 per cent increments, from 1 per cent to 49 per cent distortion. Check that PERCENT DISTORTION meter indications follow the increments.
(13) Adjust test signal to 40 per cent spacing end distortion. Check that PERCENT DISTORTION meter indicates 40 per cent, and SPACING indicator lamp lights.
(14) Set DISTORTION SELECT switch to BIAS.
(15) Adjust test signal to 40 per cent marking bias distortion. Check that PERCENT DISTORTION meter indicates 40 per cent, and MARKING indicator lamp lights.
(16) Adjust test signal to 40 per cent spacing bias distortion. Check that PERCENT DISTORTION meter indicates 40 per cent, and SPACING indicator lamp lights.
(17) Set DISTORTION SELECT switch to EARLY PEAK.
(18) Momentarily depress PEAK RESET switch to MAN, and check that PERCENT DISTORTION meter indicates 0.
(19) Adjust test signal to marking bias, and check that PERCENT DISTORTION meter pointer is deflected to (and holds at) 40 per cent.
(20) Momentarily depress PEAK RESET switch to MAN, and check that PERCENT DISTORTION meter resets to 0 and then to 40 per cent and holds at 40 per cent.
(21) Set PEAK RESET switch to AUTO. Check that PERCENT DISTORTION meter pointer is deflected to 40 per cent (at which it holds for about five seconds) and then reset to 0 , repeatedly.
(22) Set PEAK RESET switch to OFF.
(23) Set DISTORTION SELECT switch to LATE PEAK.
(24) Momentarily depress PEAK RESET switch to MAN, and check that PERCENT DISTORTION meter indicates 0 .

Figure 5-2. Component Board Al, Parts Locations
(25) Adjust test signal to spacing bias. Check that PERCENT DISTORTION meter pointer is deflected to (and holds at) 40 per cent.
(26) Momentarily depress PEAK RESET switch to MAN. Check that PERCENT DISTORTION meter pointer is reset to 0 and is then deflected to 40 per cent, at which it holds.
(27) Set PEAK RESET switch to AUTO. Check that PERCENT DISTORTION meter pointer is deflected to 40 per cent (at which it holds for about five seconds) and then reset to 0 , repeatedly.
(28) Adjust test signal to marking/spacing (switched) bias distortion, and check that PERCENT DISTORTION meter pointer continues to be deflected and reset.
(29) Set DISTORTION SELECT switch to EARLY and TOTAL PEAK. Check that, at each setting, the PERCENT DISTORTION meter pointer continues to be deflected and reset.
(30) Adjust test signal to marking bias distortion and selected character (mark-space-mark-space-mark-space-mark-space).
(31) Set DISTORTION SELECT switch to BIAS.
(32) Set TRANSITION SELECT switch to each of positions 1 through 9 , inturn. Check that PERCENT DISTORTION meter indicates 40 per cent at positions $1,3,5$, 7 , and $9--$ and 0 at positions 2, 4, 6, and 8 .
(33) Adjust test signal to marking end distortion.
(34) Set DISTORTION SELECT switch to END.
(35) Set TRANSITION SELECT switch to each of positions 1 through 9, inturn. Check that PERCENT DISTORTION meter indicates 40 per cent at positions 2, 4,6 , and 8 --and 0 at positions $1,3,5,7$, and 9. b. SYNCHRONOUS PROCEDURE.
(1) Energize Analyzer and allow a 10-minute warmup.
(2) Set controls as follows:
(a) INPUT SELECT, LOW LEVEL.
(b) INPUT POLARITY, (+).
(c) INPUT FILTER, OUT.
(d) PEAK RESET, OFF.
(e) TRANSITION MARKERS, OUT.
(f) CODE LEVEL, SYNC.
(g) RATE BAUDS, 37.5.
(h) TRANSITION SELECT, ALL.
(i) DISTORTION SELECT, BIAS.
(3) Use a distortion generator to apply a test signal (low-level, 37.5 baud, 40 per cent marking bias distortion) to the HI-Z jack.
(4) Check that PERCENT DISTORTION meter indicates 40 per cent, and that MARKING indicator lamp is lighted.
(5) Adjust test signal and set RATE BAUDS switch to $45.5,50,61.1,75$, $150,300,600,1200$, and 2400 bauds, in turn. At each setting, check that PERCENT DISTORTION meter indicates 40 per cent.
(6) Adjust test signal and set RATE BAUDS switch to 37.5 bauds.
(7) Adjust test signal, in 1 per cent increments, from 1 per cent to 49 per cent distortion. Check that PERCENT DISTORTION meter indications follow the increments.
(8) Adjust test signal to 40 per cent spacing bias distortion. Check that PERCENT DISTORTION meter indicates 40 per cent and that SPACING indicator lamp lights.
(9) Set DISTORTION SELECT switch to EARLY PEAK.
(10) Momentarily depress PEAK RESET switch to MAN. Check that PERCENT DISTORTION meter indicates 0.
(11) Adjust test signal to marking bias. Check that PERCENT DISTORTION meter pointer is deflected to (and holds at) 40 per cent.
(12) Momentarily depress PEAK RESET switch to MAN. Check that PERCENT DISTORTION meter resets to 0 and then to 40 per cent and holds at 40 per cent.
(13) Set PEAK RESET switch to AUTO. Check that PERCENT DISTORTION meter pointer is deflected to 40 per cent(at which it holds for about five seconds) and then reset to 0 , repeatedly.
(14) Set PEAK RESET switch to OFF.
(15) Set DISTORTION SELECT switch to LATE PEAK.
(16) Momentarily depress PEAK RESET switch to MAN. Check that PERCENT' DISTORTION meter indicates 0 .
(17) Adjust test signal to spacing bias. Check that PERCENT DISTORTION meter pointer is deflected to (and holds at) 40 per cent.
(18) Momentarily depress PEAK RESET switch to MAN. Check that PERCENT DISTORTION meter pointer is reset to 0 and is then deflected to 40 per cent, at which it holds.
(19) Set PEAK RESET switch to AUTO. Check that PERCENT DISTORTION meter pointer is deflected to 40 per cent (at which it holds for about five seconds) and then reset to 0 , repeatedly.
(20) Adjust test signal to marking/spacing (switched) bias distortion. Check that PERCENT DISTORTION meter pointer continues to be deflected and reset.
(21) Set DISTORTION SELECT switch to EARLY and TOTAL PEAK. Check that, at each setting, PERCENT DISTORTION meter pointer continues to be deflected and reset.

5-4. ADJUSTMENTS.
Perform the following procedures every 90 days.
a. TEST EQUIPMENT REQUIRED.
(1) Test Set, Distortion Generator AN/UGM-8.
(2) Multimeter AN/PSM-4D.
b. PRELIMINARY OPERATIONS.
(1) Energize Analyzer and Distortion Generator. Allow 10-minute warmup.
(2) Set Analyzer controls as follows:
(a) INPUT SELECT, NEUTRAL 60MA.
(b) INPUT POLARITY, (+).
(c) INPUT FILTER, OUT.
(d) PEAK RESET, OFF.
(e) TRANSITION MARKERS, OUT.
(f) CODE LEVEL, S/S 5 .
(g) RATE BAUDS, 37.5.


``` sv/Cm Lus/CM
```



``` 5v/CM Lus/CM
Chasisis ground common.
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{тransistor} & \multicolumn{2}{|l|}{ramrtre} & \multicolumn{2}{|r|}{bsse} & \multicolumn{2}{|l|}{courecror} \\
\hline & voris \({ }^{\text {s }}\) & ониs & vors \({ }^{3}\) & OHms \({ }^{\text {b }}\) & vours \({ }^{\text {a }}\) & овмs \({ }^{\text {b }}\) \\
\hline \({ }^{\text {o1 }}\) & -1 & \({ }^{20 \mathrm{~K}}\) & - & & +8 & \({ }^{3.6 \mathrm{~K}}\) \\
\hline \(Q^{2}\) & + & sor & +8 & 3.9k & +15 & 1.18 \\
\hline \({ }^{\text {a }}\) & +4 & зок & +6 & 50\% & +6 & 2008 \\
\hline \({ }^{\circ} 4\) & - & - & 40.5 & \(1{ }^{1 k}\) & \(+1\) & \\
\hline \({ }^{\text {as }}\) & \(\bigcirc\) & 0 & +0.5 & 1.1k & +3.5 & \({ }^{8 \times}\) \\
\hline \({ }_{97}^{\circ 6}\) & \(\bigcirc\) & \(\because\) & -0.5 & \({ }^{\text {1k }}\) & \({ }_{+}^{+3.5}\) & \({ }_{\substack{\text { 3K.8x } \\ 3 \mathrm{k}}}\) \\
\hline \({ }^{\circ}\) & - & - & -0.5 & 1k & \({ }_{+}^{+3.5}\) & \({ }_{3 \mathrm{~K}}\) \\
\hline \(\stackrel{\text { ¢ }}{ }\) & \(\bigcirc\) & - & \(\bigcirc\) & 1 k & + 3 & 3.9k \\
\hline 910 & \(\bigcirc\) & - & \({ }^{-0.8}\) & & \({ }^{+3.5}\) & \({ }^{\text {зк }}\) \\
\hline 911 & - & - & - & ı & +0.5 & .8к \\
\hline
\end{tabular}
```


(h) TRANSITION SELECT, ALL.
(i) DISTORTION SELECT, END.
c. PROCEDURE.
(1) Adjust PERCENT DISTORTION meter pointer (screwdriver adjustment on front of meter) to indicate 0 .
(2) Connect test signal from Distortion Generator (60-milliampere neutral, 5-level code, 40 per cent end distortion, 37.5 bauds) to the LO-Z jack on Analyzer.

WARNING

Voltages dangerous to life and limb exist inside case.
(3) Connect AN/PSM-4D to TP1 (+) and TP3 (-) on component board Al0.
(4) Adjust R8 (on Al0) for an indication of 40 per cent on PERCENT DISTORTION meter of Analyzer. (AN/PSM-4D should indicate about +15.2 or +15.3 volts.)
(5) Connect AN/PSM-4D to TP4 (-) and TP3 (+) on component board A10.
(6) Adjust R38 (on A10) for an indication of -15 volts on AN/PSM-4D.
(7) Connect AN/PSM-4D to TP2 (+) and TP3 (-) on component board Al0.
(8) Adjust R18 (on Al0) for an indication of +5.8 volts on AN/PSM-4D.

5-5. SPECIAL REPAIR DATA.
a. ELECTRONIC RELAY REMOVAL. - To remove electronic relay, (Al4, see figure 5-1), first remove four nuts from studs on relay case. The nuts are accessible from underside of chassis. Then un-plug relay.
b. RFI SHIELD REMOVAL. - Remove the rfi shield, located inside the chassis behind the power cord entrance (see figure 5-1) as follows:
(1) Remove two screws that fasten the shield bracket and the three ground leads to chassis.
(2) Remove two screws that fasten the shield bracket to the rear of rfi shield, and remove bracket.
(3) Being careful not to move rfi shield, remove cover from rear of rfi shield.
(4) See view B of figure 5-1. Unsolder four leads from external sides of feed-through capacitors C4, C5, C6, and C7.
(5) Referring to view B of figure $5-1$, unsolder R1 from C6, R2 from C7, L2 from C5, and L1 from C4.
(6) With care, remove rfi shield by moving it directly away from the front panel far enough to clear internal assembly (which remains fixed to front panel).

Figure 5-8. Component Board A4, Parts Locations

wave form

	епиmrer		bism		courecror	
	vorrs ${ }^{\text {a }}$	овмs	vorrs ${ }^{\text {s }}$	онм ${ }^{\text {b }}$	vorrs ${ }^{\text {s }}$	овмs ${ }^{\text {b }}$
${ }^{\text {Q1 }}$	-	-	-1	1.1 L	${ }^{+6}$	2.6 K
${ }^{\text {Q2 }}$	\bigcirc	\bigcirc	${ }^{+1}$	1.115	${ }^{+0.1}$	${ }^{2.68}$
${ }_{\text {Q }}$:		+6			${ }^{\substack{2.68 \\ 2.68}}$
${ }_{\text {¢ }}^{0}$:	\bigcirc	+1			${ }^{\text {2, }}$
${ }_{8} 6$			+1	1.15	+0.1	${ }^{2.6 \mathrm{k}}$
${ }^{\circ}$	\bigcirc	-	${ }^{-1}$	1.11 L	+6	2.6k
${ }^{\circ 8}$	\bigcirc	-	+1	1.1.1k	+0.1	2.68
${ }^{\circ 9}$	\therefore	\therefore	+1	1.11k	+0.1	${ }^{2.68}$
9	\therefore	\bigcirc	-1	1.11k	+6	${ }_{2}^{2.6 \mathrm{~K}}$
${ }^{\text {011 }}$	\bigcirc	\bigcirc	${ }_{+1}^{+1}$		+0.1	
-012	:	:	${ }_{-1}^{-1}$		${ }^{+6}$	
${ }_{\text {O}}$:		$\stackrel{-1}{-1}$		${ }_{\text {+0, }}^{+6}$	
915	-		+1		+0.1	2.6 k
916	-	-	-1	1.1k	+6	2.6 K

re
13

$\begin{gathered} \text { PER CENT } \\ \text { DISTORTION }+2 \% \end{gathered}$		TEST Points			
Latt	Eariy	Q3 CASE	Q6 CASE	Q9 CASE	Q12 CASE
3\%	2\%	Low	High	High	High
2\%	1\%	High	Low	High	High
4\%	3\%	High	High	Low	High
6\%	5\%	High	High	Low	Low

Input signal: The above table lists the states of inverters Q
and $\mathrm{Q12}$ for four different values of input signal distortion. Since the Analyzer is limited to two per cent accuracy, the value of input
signal distortion may have to be changed by one or two per cent in order sitgal distortion may have to be changed by one or two per cent in order
to anhereve the states Isted If in inverter can on observed to hange
state, it and its associated bistable can be pre sumed to be good.

transistor	Emitter		BASE		Collector	
	voirs ${ }^{\text {a }}$	онмs ${ }^{\text {b }}$	voirs ${ }^{\text {a }}$	онм ${ }^{\text {b }}$	volts ${ }^{\text {a }}$	онмя ${ }^{\text {b }}$
Q1	0	0	${ }^{-1}$	${ }^{1 \mathrm{~K}}$	+6	3.6к
Q2	0	0	+1	${ }^{1 k}$	+0.1	2.8 K
Q3	0	0	-1	1 K	+15	25K
Q4	0	0	-1	1 k	+6	${ }^{\text {3.8к }}$
Q5	0	0	+1	1 k	+0.1	2.8 K
Q6	0	.	${ }^{-1}$	${ }^{1 k}$	+15	25K
Q7		0	-1	${ }^{1 \mathrm{k}}$	+6	3.8K
Q8	0	0	+1	${ }^{1 \mathrm{~K}}$	+0.1	3.8K
Q9	0	0	${ }^{-1}$	${ }_{1}$	+15	25K
Q10	0	0	${ }^{-1}$	${ }^{16}$	+6	3.8к
Q11	0	0	+1	${ }^{1 \mathrm{~K}}$	+0.1	2.8K
Q13	0	0	-1	1 k	+13	1 K

1. Chass 1 i ground common.
otrs

Figure 5-17. Component Boards A8 and A9, Parts Locations

$\begin{gathered} \text { PER CENT } \\ \text { DISTORTION } \pm 2 \% \end{gathered}$		test points		
Late	Eariy	Q3 CASE	Q6 CASE	Q9 CASE
10\%	9\%	Low	High	High
20\%	19\%	High	Low	High
40\%	39\%	High	High	Low

Figure 5-18. Component Board A9 (P)/O Distortion Register,
Gates, and Meter Drive), Schematic Diagram

TRANSISTOR	Emitter		BASE		COLLector	
	$\text { volts }^{a}$	OHMS ${ }^{\text {b }}$	$\text { volts }{ }^{9}$	ОНм ${ }^{\text {b }}$	voi.ts ${ }^{\text {a }}$	OHMS ${ }^{\text {b }}$
Q1	+22	6K	+22	35K	+21	8K
Q2	+22	6K	+21	8 K	+15	0.6
Q3	+16	5K	+16	4K	+15	5K
Q4	$+6$	1.6 K	+ 6	0.3 K	+10	1.6 K
Q5	+ 6	1.6 K	+ 6	2K	+15	5K
Q6	+ 0.02	0.8K	- 0.1	15K	0	0
Q7	+ 6	0.8 K	+ 5	1.6 K	+ 2	1 K
Q8	+ 6	0.8 K	+ 5.5	1 K	+ 1	0.8 K
Q9	+ 1.5	0.5K	+ 2	1 K	+ 4.5	1.1 K
Q10	+ 1	0.7K	+ 1.5	0.5	+ 5	1.1 K
Q11	-22	2.5K	-22	3.5K	-21	1 K
Q12	-22	3.5 K	-21.5	3к	-16	зк
Q13	-22	3.5K	-22	3K	-16	3K
Q14	-22	3k	-22	1 K	-16	3k
Q15	+1	1K	0	0	-21	1K
Q16	+1	1K	0	0.8 K	-14.5	3K

RESISTANCE VAIUES ARE IN OHMS．

Figure 5－22．Component Board Al 3，Parts Locations

Notes:
unless otherwise indicated resistance values are in ohms.
2. Indicates chassis panel marking.
3. WAFER SWITCHES SHOWN IN EXTREME COUNTER-CLOCKWISE POSITION, ANDARE VIEWED FROM FRONT EXCEPT AS OTHERWISE POSITION, ANDARE VIEWED FROM FRONT EXCEPT AS OTHERWISE
INDICATED. FRONT OF WAFER IS SIDE TOWARD CONTROL KNOB.
WAFER NEAREST CONTROL KNOB IS SECTIONA.

Figure 5-24. Component Board A15 (Crystals), Parts Locations

Figure 5-25. Primary Power Distribution

Figure 5-26. Over-All Wiring Diagram (Sheet 1 of 2)

SECTION 6

PARTS LIST

6-1. INTRODUCTION.

a. REFERENCE DESIGNATIONS.- A uniform identification method has been used to identify the unit, assemblies, and maintenance parts of the Analyzer. This method adequately covers the several degrees of subdivision of the equipment. Examples of this method are illustrated by the following:

Example 1:
1 R 1

Chassis Unit Identification No.

Class of Part

Read as: First (1) resistor (R) of chassis unit (1).

Example 2:
1 A1
Chassis Unit
Identification No.

Assembly
Designation

Item No. within class

Read as: First (1) assembly (A) of chassis unit (1).
Example 3:

| Chassis Unit
 Identification No.Assembly
 Designation
 and No. | Class and
 No. of Part |
| :---: | :---: | :---: |
| Read as: First (1) resistor (R) of first (1) assembly (A) of | |
| chassis unit (1). | |

b. REF DESIG PREFIX.- Partial reference designations are used on the equipment and illustrations. The partial reference designations consist of the class letter(s) and the identifying item number. The complete reference designations may be obtained by placing the proper prefix before the partial reference designations. Prefixes are provided on illustrations following the notation "REF DESIG PREFIX."

6-2. LIST OF ASSEMBLIES.

Table 6-1 identifies the assemblies contained in the equipment. This table provides a listing of printed-circuit identification numbers which will enable identification of these assemblies if the assembly reference designations on the extractor handle tabs become obliterated. The last column of the table provides an index to facilitate location of the maintenance parts list for each assembly.

TABLE 6-1. LIST OF MAJOR ASSEMBLIES

$\begin{gathered} \text { ASSY } \\ \text { REF } \\ \text { DESIG } \end{gathered}$	$\begin{gathered} \text { QTY } \\ \text { PER } \\ \text { EQUIP } \end{gathered}$	CIRCUIT BOARD ASSEMBLY PART NUMBER	COLLOQUIAL NAME	$\begin{aligned} & \text { PARTS } \\ & \text { LIST } \\ & \text { PAGE } \end{aligned}$
1 Al	1	80195020	Circuit Card As sembly	6-5
1A2	1	80195030	Circuit Card Assembly	6-7
1 A 3	1	80195040	Circuit Card Assembly	6-10
1A4	1	80195010	Circuit Card Assembly	6-13
1A5	1	80195090	Circuit Card Assembly	6-15
1 A6	1	80195050	Circuit Card Assembly	6-18
1 A7	1	80195080	Circuit Card Assembly	6-21
1A8	1	80195060-001	Circuit Card Assembly	6-23
1 A9	1	80195060-002	Circuit Card Assembly	6-26
1 A10	1	80281290	Circuit Card Assembly	6-29
1All	1	80195120	Extender Card Assembly	6-31
1 A1 2	1	80195160	Harness Card Assembly	6-32
1 A13	1	80195190	Circuit Card Assembly	6-32
1 A14	1	48092015	Converter Telegraph Signal	6-32
1A15	1	90195003	Crystal Holder	6-33

6-3. MAINTENANCE PARTS LIST.
Table 6-2 lists the telegraph signal analyzer unit and all assemblies, and their respective maintenance parts, except for the converter telegraph signal (assembly A14) which is a sealed plug-in unit. Maintenance parts, in each case, are listed alphanumerically following the telegraph signal analyzer unit identification and assembly designation (where applicable). The table provides the following information: (1) the complete reference designation of each maintenance parts, (2) reference to explanatory notes as required, (3) name and description of maintenance part, (4) listing of illustration which pictorially locates the part.

6-4. LIST OF MANUFACTURERS .

Table 6-3 lists the manufacturers of parts used in the equipment. The table includes the manufacturer's code used in table 6-2 to identify the manufacturers.

6-5. NOTES.
The following notes provide information as referenced in table 6-2.

1. Spare fuse located in cover.
2. Fuseholder located in cover, used to accommodate spare fuses.

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 1CR1 lCR2 1 Cl 1C2 1 C3 1C4-1C7 1C8-1C18 1C19-1C20 1 FLI 1 F1		TELEGRAPH SIGNAL ANALYZER UNIT: Consists of a front panel, cover, and main chassis. It provides circuitry for the below listed items and the assemblies referenced in table 6-1; mfr 96238, dwg C90195000 SEMICONDUCTOR: MIL type 1 N1614 Same as lCRI CAPACITOR: MIL type CE71C682E CAPACITOR: MIL type CE13C351F Same as 1C2 CAPACITOR: 1000uuf, 500V; type FB3B-102W (01121) CAPACITOR: MIL type CK60AW102M CAPACITOR: MIL type CK63AWI03M FILTER,RADIO INTERFERENCE: $115 \mathrm{vac}, 0.5 \mathrm{amp} ; 230 \mathrm{vac}$ $0.25 \mathrm{amp}, 0$ to 440 cps ; type 43020109 (96238) FUSE: MIL type FO2A2501-2A	5-1

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont ${ }^{\text {² }}$)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
$1 F 2$	1	Same as 1 Fl	5-1
1F3		FUSE: MIL type F02A250V001A	
1F4		FUSE: MIL type F02A250V1-8A	
171		CONNECTOR: MIL type MS27035-625B	
1丁2, lJ3		Same as ljl	
154		JACK: MIL type JJ022	
1 J 5		JACK: MIL type JJ086	
156		Same as 1Jl	
1L1-1L4		COIL, RF: MIL type MS91189-37	
1 MPI		KNOB: round dial skirt with baud rate markings, 1.525 in . high, 1.010 in . long, 0.250 in . shaft hole; type 57025110 (96238)	
1 MP 2		KNOB: MIL type MS91528-1K2B	
$1 \mathrm{MP} 3-1 \mathrm{MP5}$		Same as 1 MPl	
1 Ml		METER, SPECIAL SCALE: 0 to 50% scale, 0 to $1 \mathrm{ma} \pm 2 \%$ accuracy, rugged panel type; type 48081061 (96238)	
1 M 2		AMMETER: $30-0-30 \mathrm{ma}$ scale, $100-0-100 \mathrm{ma}$ scale, $\pm 1 \%$ accuracy, rugged panel type: type 48081072 (96238)	
1 Pl		CONNECTOR: MIL type UP221M	
R1-R3		RESISTOR: MIL type RC07GF302J	
1Q1		TRANSISTOR: MIL type 2N297A	
1SI		SWITCH,ROTARY: 5 positions, 2 sections; nonshorting contacts; type 46020325 (96238)	
1S2		SWITCH,ROTARY: 3 positions, 2 sections; nonshorting contacts; type 46020326 (96238)	
1S3		SWITCH,ROTARY: 14 positions, 4 sections; nonshorting contacts; type 46020322 (96238)	
1S4		SWITCH,ROTARY: 10 positions, 4 sections; nonshorting contacts type 46020331 (96238)	
1 S 5		SWITCH, TOGGLE: MIL type MS35059-31	
156		SWITCH, TOGGLE: MIL type MS25100-23	
1S7-1S9		Same as lS6	
1 S10		SWITCH,ROTARY: 6 positions, 4 sections; nonshorting contacts; type 46020322 (96238)	
1 TI		TRANSFORMER, POWER STEP-DOWN: Primary $115 / 230 \mathrm{vac}$ 47 to 420 cps secondary; 36vac center tap; type 43000216 (96238)	
1 XA 14		SOCKET, RELAY: 11 contacts, $500 \mathrm{v} ; 3$ amp rating, black phenolic body; type 78S11-101 (02660)	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1XDS 1	2	LIGHT: MIL type MS25256-8-327 Same as 1XDS1 LIGHT: MIL type MS25256-6-327 FUSEHOLDER: MIL type FHN26G Same as lXFl. FUSEHOLDER: MIL type FH23BM FUSEHOLDER: MIL type FH23CM	5-1
1XDS2-			
1XDS4			
1XDS5			
1XF1			
1XF2			
1XF3			

ASSEMBLY 1Al CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
1 Al		CIRCUIT CARD ASSEMBLY: Consists of a printedcircuit board which mounts and supplies the circuitry for the below listed items; D80195020 (96238)	5-2
1 AlCRI		SEMICONDUCTOR: MIL type 1N914	
1A1 CR2		SEMICONDUCTOR: MIL type 1N277	
1A1CR3,			
1 AlCR 4		Same as lAlCR2	
1AlCR5,			
1A1CR6		Same as lAlCR1	
1A1CR7,			
1 AlCR8		Same as lalcr2	
1 AlCR9,			
1 AlCR10		Same as lal CRl	
1A1CR11,			
1 Al CRI 2		Same as lAlCR2	
$1 \mathrm{AlCR13}$,			
1 AlCR1 4		Same as lal CRI	
1A1CRI5		Same as 1AlCR2	
1 AlCl		CAPACITOR: MIL type CM05ED270J03	
1 AlC 2		Not used	
$1 \mathrm{AlC3}$		CAPACITOR: MIL type CM05FD271J03	
$1 \mathrm{AlC4}$		CAPACITOR: MIL type CM05FD101J03	
$1 \mathrm{AlC5}$,			
1 AlC6		Not used	
$1 \mathrm{AlC7}$		CAPACITOR: MIL type CM06FD332J03	
$1 \mathrm{AlC8}$		CAPACITOR: MIL type CM05FD131J03	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
$1 \mathrm{AlC9}$		CAPACITOR: MIL type CM05FD391J03	5-2
1 AlCl 0		CAPACITOR: MIL type CM05FD241J03	
1A1Cll		CAPACITOR: MIL type CM05FD241T03	
1AlCll		CAPACITOR: MIL type CM06FD242J03	
AAlCl2		CAPACITOR: MIL type CM05FD361J03	
1 AlCl 3		CAPACITOR, FXD, CERAMIC: $0.1 u f+80 \%-20 \%, 25 v d C w ;$ type 5815Y5U104Z (72982)	
1AlCl4		CAPACITOR: MIL type CS13BF474M	
1 AlCl 5		CAPACITOR: MIL type CM06FD431J03	
1 AlCl 6		CAPACITOR: MIL type CM05FD181J03	
1 AlCl 7		Same as lAlC9	
1 AlCl 8		Same as lAlCl 6	
1A1C19		CAPACITOR: MIL type CM06FDl22J03	
1 AlC 20		CAPACITOR: MIL type CM05FD101J03	
1AlC21-			
1 AlC 25		Same as 1AlC20	
1A1C26,			
1 AlC27		Not used	
$1 \mathrm{AlC28}$		CAPACITOR: MIL type CS13BE156M	
$1 \mathrm{AlC29}$		Same as 1AlCl3	
$1 \mathrm{AlC30}$		Same as 1AlC28	
$1 \mathrm{AlC31}$		Same as lalcl3	
1A1C32		Same as 1A1C28	
$1 \mathrm{AlC3} 3$		Same as 1AlCl3	
1A1L1		CHOKE,RADIO FREQUENCY: $56 \mathrm{uh} \pm 2 \%$; type SW056 (72259)	
$1 \mathrm{AlMP1}$		INSULATOR,DISK: Nylon, 0.350 in . outside diameter; 0.200 in . inside diameter type RC-T01800-1A (24227)	
1A1MP2- 1A1MP11		Same as lAlMPl	
lAlQ1		TRANSISTOR: MIL type 2N706	
1A1Q2-			
1A1Q11		Same as 1A1Q1	
1A1R1		RESISTOR: MIL type RN65Cl501F	
1A1R2		RESISTOR: MIL type RN65C3011F	
IA1R3		RESISTOR: MIL type RC07GF101J	
1A1R4		RESISTOR: MIL type RC07GF393J	
lAlR5		Same as lAlR3	
1A1R6		RESISTOR: MIL type RC07GF822J	
1A1R7		RESISTOR: MIL type RC07GF152J	
1A1R8		RESISTOR: MIL ty pe RC07GF104J	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A1R9		RESISTOR: MIL type RC07GF153J	5-2
1AlR10		RESISTOR: MIL type RC07GF332J	
1A1R11		Same as lalR8	
AA1R12		RESISTOR: MIL type RC07GF392J	
lAlR13		RESISTOR: MIL type RC07GF182J	
1AlRl 4		Same as 1A1R12	
1AlR15		RESISTOR: MIL type RC07GF683J	
1AlR16		RESISTOR: MIL type RC07GF472J	
lAlR17		Same as lAlRl2	
1AlR18		Same as 1A1R15	
1AlR19		Same as lAlR16	
1A1R20		Same as lAlRl2	
1A1R21		Same as lAlRl3	
1AlR22		Same as lAlR12	
1AlR23		Same as lAlRl5	
1AlR24		Same as lAlRl 6	
1A1R25		Same as lAlRl2	
1A1R26		Same as lAlR15	
1A1R27		Same as lalR16	
1A1R28		Same as lAlR12	
1A1R29		Same as lAlR13	
1A1R30		Same as lAlR12	
1A1R31		Same as lAlRl5	
1A1R32		Same as lAlRl 6	
1A1R33		Same as 1AlR12	
1A1R34		Same as lAlRl5	
1A1R35		Same as lAlR16	
1A1R36		Same as lAlR12	

ASSEMBLY 1A2 CIRCUIT CARD ASSEMBLY

| $\begin{array}{c}\text { REF } \\ \text { DESIG. }\end{array}$ | NOTES | $\begin{array}{l}\text { FIG. } \\ \text { IA2 }\end{array}$ | NAME AND DESCRIPTION |
| :---: | :---: | :--- | :--- |$]$| NO. |
| :--- |

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont d)

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A2Q12-			
1A2Q17		TRANSISTOR: MIL type 2N404	5-4
1A2R1		RESISTOR: MIL type RC07GF182J	
1A2R2		RESISTOR: MIL type RC07GF392J	
-1A2R3		RESISTOR: MIL type RC07GF683J	
1A2R4		RESISTOR: MIL type RC07GF472J	
1A2R5		Same as 1A2R2	
1A2R6		Same as 1A2R3	
1A2R7		Same as 1A2R4	
1A2R8,			
1A2R9		Same as 1A2R1	
1A2R10		Same as la 2R2	
1A2RII		Same as la2R3	
1A2R12		Same as la2R4	
1A2R13		Same as 1A2R2	
1A2R14		Same as 1A2R3	
1A2R15		Same as lA2R4	
1 A 2 Rl 6.			
1A2R17		Same as 1A2RI	
1A2R18		Same as 1A2R2	
1A2R19		Same as 1A2R3	
1A2R20		Same as lathr	
1A2R21		Same as lA2R2	
1A2R22		Same as lath3	
1A2R23		Same as la 2 R4	
1A2R24,			
1 A2R25		Same as 1A2R1	
1A2R26		Same as la 2R2	
1A2R27		Same as lA2R3	
1 A2R28		Same as la 2 R4	
1A2R29		Same as 1A2R2	
1 A 2 R 30		Same as latr3	
1A2R31		Same as la2R4	
1A2R32		Same as 1A2RI	
1A2R33		RESISTOR: MII type RC07GF153J	
1A2R34		RESISTOR: MIL type RC07GF682J	
1A2R35		RESISTOR: MIL type RC07GF823J	
1A2R36		Same as 1A2R4	
$\begin{aligned} & \text { 1A2R3 } 7- \\ & \text { 1A2R39 } \end{aligned}$		Same as 1A2R33	
1A2R39		Same as 1A2R33	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A2R40		RESISTOR: MIL type RC07GF154J	5-4
1A2R41		Same as 1A2R40	
1A2R42		RESTSTOR: MIL type RC07GF102J	
1A2R43		Same as 1A2R33	
1A2R44		RESISTOR: MIL type RC07GF223J	
1 A2R45		RESISTOR: MIL type RC07GF103J	
1A2R46		RESISTOR: MIL type RC07GF473J	
1 A2R47		Same as 1A2R46	
1A2R48		RESISTOR: MIL type RC07GF273J	
1A2R49		Same as 1A2R45	
1A2R50		Same as la2R33	
1 A2R51		RESISTOR: MIL type RCU7GF272J	
1A2R52		RESISTOR: MIL type RC07GF562J	
1A2R53		RESISTOR: MIL type RC07GF104J	
1 A2R54		Same as 1A2R45	
1A2R55,			
1A2R56		Same as la2R52	
1A2R57		RESISTOR: MIL type RC07GF563J	
1A2R58		Same as 1A2R51	
1A2R59		Same as 1A2R45	
1A2R60		Same as 1A2R2	
1A2R61		Same as lark	
la 2 R62 1A2R63		Same as la2R33 RESISTOR. MIL type RN65C7503F	

ASSEMBLY IA3 CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A3		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; D80195040 (96238)	5-6
$1 \mathrm{~A} 3 \mathrm{CR1}$		SEMICONDUCTOR: MIL type 1N914	
1 A 3 CR 2		SEMICONDUCTOR: MIL type 1N277	
1 A2CR3-			
$\begin{aligned} & 1 \mathrm{~A} 3 \mathrm{CR} 12 \\ & \text { 1A3CR13 } \end{aligned}$		Same as 1A3CR2	
1 A3CR1 4		Same as 1 A 3 CRI	
$1 A 3 C R 15$, 1 A3CR16		Same as lA3CR2	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A3CR17,			5-6
1A3CR18		Same as 1A3CRI	
1A3CR19-			
1 A3CR24		Same as la3CR2	
1A3CR25,			
1A3CR26		Same as 1A3CR1	
1A3CR27		Same as la3CR2	
1 A 3 Cl		CAPACITOR: MIL type CM05FD101J03	
1A3CR2-			
1 A 3 CR 5		Same as 1A3Cl	
1 A 3 C 6		CAPACITOR: MIL type CM05ED470J03	
1 A 3 C 7		Same as 1A3Cl	
1 A 3 C 8		Same as 1A3C6	
1 A 3 C 9		CAPACITOR: MIL type CSI3BE156M	
1 A 3 Cl 0 ,			
$1 \mathrm{~A} 3 \mathrm{Cl1}$		Same as 1A3C9	
1 A 3 Cl 2		CAPACITOR: MIL type CSI3BE225M	
1 A 3 Cl 3		Same as 1A3Cl2	
$1 \mathrm{~A} 3 \mathrm{MP1}$		INSULATOR,DISK: Nylon, 0.350 in . outside diameter; 0.200 in . inside diameter, type RC-T01800-1A (24227)	
1 A3 MP2-			
1 A3MP16		Same as 1A3MPl	
1A3Q1-			
IA3Q14		TRANSISTOR: MIL type 2N706	
1A3Q15		TRANSISTOR: MIL type 2N2222	
1A3Q16		Same as 1A3Q15	
1 A 3 RI		RESISTOR: MIL type RC07GF272J	
1 A 3 R 2		RESISTOR: MIL type RC07GF273J	
1 A3R3		RESISTOR: MIL type RC07GF182J	
1 A3R4		RESISTOR: MIL type RC07GF682J	
1A3R5		RESISTOR: MIL type RC07GF823J	
1A3R6		RESISTOR: MIL type RC07GF822	
1 A3R7		RESISTOR: MIL type RC07GF562J	
1A3R8		Same as la3R7	
1 A3R9		RESISTOR: MIL type RC07GF222]	
1 A3R10		Same as 1A3R9	
1A3R11		Same as lA3R7	
1 A 3 Rl 2		Same as lA3R1	
1 A 3 Rl 3		Same as 1A3R2	
1 A 3 Rl 4		Same as 1A3R7	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A3R15		Same as 1A3R1	5-6
1A3R16		Same as la3R2	
1 A3R17		RESISTOR: MIL type RC07GF332I	
1A3R18		Same as 1A3R17	
1A3R19		Same as 1A3R1	
1A3R20		Not used	
1A3R21		Same as IA3RI	
1A3R22		Not used	
1A3R23		RESISTOR: MIL type RC07GF683J	
1A3R24		Same as lA3R17	
1A3R25		RESISTOR: MIL type RC07GF333J	
1A3R26		Same as lA3RI	
1A3R27		Same as 1A3R17	
1A3R28		Same as la3R4	
1A3R29		Same as 1A3R3	
1A3R30		RESISTOR: MIL type RC07GF122J	
1A3R31		Same as 1A3R17	
1A3R3 2		Same as 1A3R23	
1A3R33		Same as lA3R17	
1A3R34		Same as 1A3R23	
1A3R35		RESISTOR: MIL type RC07GF392J	
1A3R36		Same as la3R7	
1A3R37		RESISTOR: MIL type RC07GF563J	
1A3R38,			
1 A3R39		Same as la3R7	
1A3R40		Same as 1A3R37	
1A3R41		Same as la3R7	
1A3R42		RESISTOR: MIL type RC07GF103J	
1A3R43		Same as 1A3R4	
1 A 3 R 44		Same as 1A3R35	
1A3R45		Same as 1A3R17	
1A3R46		Same as lA3R23	
1A3R47		Same as 1A3R17	
1A3R48		Same as 1A3R23	
1A3R49		Same as lA3R3	
1A3R50		Same as la3R30	
1A3R51		Same as 1A3R35	
1 A3R52		Same as lA3R1	
1A3R53		Same as 1A3R25	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF.			NAME AND DESCRIPTION
DESIG.	NOTES	FIG. 1A3R54	
1A3R55	RESISTOR: MIL type RC07GF271J	$5-6$	
1A3R56		Same as 1A3R35	
1A3R57		Same as 1A3R1	
1A3R58		Same as 1A3R25	

ASSEMBLY 1 A4 CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A4		CIRCUIT CARD ASSEMBLY: Consists of a printedcircuit board which mounts and supplies the circuitry for the below listed items; D80195010 (96238)	5-8
1 A 4 CRI		SEMICONDUCTOR: MIL type 1 N277.	
1A4CR2-			
1A4CR5		SEMICONDUCTOR: MIL type 1N914	
1A4CR6,			
1A4CR7		Same as 1A4CR5	
1 A 4 CR 8		SEMICONDUCTOR: MIL type 1N645	
1A4CR9,			
1 A4CRI0		Same as 1A4CRI	
$1 \mathrm{~A} 4 \mathrm{CR11}$,			
1A4CR12		Same as lA4CR5	
1A4CR13-			
1A4CR28		Same as lA4CR1	
		CAPACITOR: MIL type CM05FD391J03	
1 A 4 C 2		Same as 1A4Cl	
1 A 4 C 3		CAPACITOR: MIL type CP05AlKC683K3	
1 A 4 C 4		CAPACITOR: MIL type CM06FD152J03	
1 A 4 C 5		Same as la4C4	
1 A 4 C 6		CAPACITOR: MIL type CM05FD101J03	
1 A 4 C 7		CAPACITOR: MIL type CS13BE156M	
1 A 4 C 8 ,			
1A4C9		Same as 1A4C7	
$1 \mathrm{~A} 4 \mathrm{MP1}$		INSULATOR, DISK: Nylon, 0.350 in . outside diameter; 0.200 in . inside diameter; type RC-T01800-1A (24227)	
$\begin{aligned} & \text { 1A4MP2- } \\ & \text { 1A4MP8 } \end{aligned}$		Same as lA4MPl	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A4Q1		TRANSISTOR: MIL type 2 N 706	5-8
1A4Q2		TRANSISTOR: MIL type 2N2222	
1A4Q3-			
1A4Q8		Same as 1A4Q1	
1A4R1		RESISTOR: MIL type RC07GF2735	
1A4R2		Same as la4Rl	
IA4R3		RESISTOR: MIL type RC07GF153J	
1A4R4		Same as 1A4R3	
1A4R5		RESISTOR: MIL type RC07GF564J	
1A4R6		Same as latr5	
1 A 4 R 7		RESISTOR: MIL type RC07GF472I	
1A4R8		RESISTOR: MIL type RC07GF104J	
1A4R9		Same as latr3	
1A4RIO		RESISTOR: MIL type RC07GF183I	
1A4R11		RESISTOR: MII type RC07GF473J	
1A4R12		Same as latr8	
1A4RI3		Same as 1A4R11	
1A4R14,			
1A4R15		Same as 1A4R8	
1A4R16		RESISTOR: MIL type RC07GF123J	
1 A 4 R 17		Same as 1A4R16	
1A4R18		RESISTOR: MIL type RC07GF224J	
1A4R19		Same as 1A4R7	
1A4R20		Same as 1A4R16	
1A4R21		Same as lA4R18	
1A4R22		Same as lA4R16	
1A4R23		RESISTOR: MIL type RC07GF332J	
1A4R24		Same as lA4Rll	
1A4R25		RESISTOR: MIL type RC07GF392J	
1A4R26		Same as 1A4R7	
1A4R27		RESISTOR: MIL type RC07GF563J	
1A4R28		Same as latr7	
1A4R29		RESISTOR: MIL type RC07GF102J	
1A4R30		Same as latr3	
1A4R31		RESISTOR: MIL type RC07GF822J	
1A4R32		Same as latr7	
1A4R33		RESISTOR: MIL type RC07GF393J	
1A4R34,			
1A4R35		Same as 1A4R10	
1A4R36		RESISTOR: MIL type RC07GF562I	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

ASSEMBLY 1A5 CIRCUIT CARD ASSEMBLY

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A5		CIRCUIT CARD ASSEMBLY: Consists of a printedcircuit board which mounts and supplies the circuitry for the below listed item; D80195090 (96238)	5-10
1 A 5 CRl		SEMICONDUCTOR: MIL type 1N277	
1A5CR2		SEMICONDUCTOR: MIL type 1N914	
1A5CR3		Same as 1A5CR2	
1 A 5 CR 4,			
1 A5CR5		Same as lA5CR1	
1A5CR6,			
1A5CR7		Same as 1A5CR2	
1A5CR8,			
1 A5CR9		Same as 1A5CRI	
1A5CR10,			
$1 \mathrm{~A} 5 \mathrm{CR11}$		Same as 1A5CR2	
1 A 5 CRI 2,			
1 A5CR13		Same as 1A5CRI	
1 A5CR14,			
1 A 5 CRl 5		Same as 1A5CR2	
lA5CR16-		Same as 1A5CR1	
lA5CR28 1A5CR29		Same as lA5CR1 Same as 1A5CR2	
1 1A5CR30-		Same as 1as Crı	
1A5CR39		Same as 1A5CRl	
1 A5 CR40,			
1 A5 CR41		Same as 1A5CR2	
1 A5CR42-		Same as la5cR1	
1 A 5 CR 48 1 A 5 Cl		Same as lA5CR1 CAPACITOR: MIL type CM05FDl01J03	
$1 \mathrm{~A} 5 \mathrm{C} 2-$			
1 A 5 C 8		Same as 1A5Cl	
1 A 5 C 9		CAPACITOR: MIL type CM05FD221J03	
1 A 5 Cl 0		CAPACITOR: MIL type CS13BE156M	
1A5C11,			
1 A 5 Cl 2		Same as 1A5Cl0	
1 A5MP1		INSULATOR,DISK: Nylon, 0.350 in . outside diameter; 0.200 in . inside diameter; RC-T01800-1A (24227)	

TABLE 6-2. TEST SET, TEELGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A5MP2-			5-10
1A5MP16		Same a s lasmpl	
1A5Q1		TRANSISTOR: MIL type 2N706	
1A5Q2-			
1A5Q10		Same as 1A5Q1	
1A5Q11		TRANSISTOR: MIL type 2N2222	
1A5Q12-			
1A5Q16		Same as 1A5Q1	
1A5R1		RESISTOR: MIL type RC07GF152J	
1A5R2		RESISTOR: MIL type RC07GF182J	
1A5R3		RESISTOR: MIL type RC07GF392J	
1A5R4		RESISTOR: MIL type RC07GF473J	
1A5R5		Same as lA5R4	
1A5R6,			
1A5R7		Same as lasR3	
1A5R8		RESISTOR: MIL type RC07GF683J	
1A5R9		Same as latra	
1A5R10,			
1A5R11		Same as 1A5R2	
1A5R12		Same as lA5R3	
1A5R13,			
1A5R14		Same as 1A5R4	
1A5R15,			
1A5R16		Same as 1A5R3	
1A5R17		Same as 1A5R8	
1A5R18		Same as 1A5R4	
1A5R19,			
1A5R20		Same as 1A5R2	
1A5R21		Same as lasR3	
1A5R22,		Same as 1A5R4	
$\begin{aligned} & \text { 1A5R23 } \\ & \text { 1A5R24, } \end{aligned}$		Same as 1A5R4	
1A5R25		Same as 1A5R3	
1A5R26		Same as 1A5R8	
1A5R27		Same as 1A5R4	
1A5R28,			
1A5R29		Same as 1A5R2	
1A5R30		Same as 1A5R3	
1A5R31,		Same as 1A5R4	
1A5R32		Same as 1A5R4	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	FIG. NO .
1A5R33,			5-10
1A5R34		Same as 1A5R3	
1A5R35		Same as 1A5R8	
1A5R36		Same as 1A5R4	
1A5R37		Same as 1A5R2	
1A5R38		RESISTOR: MIL type RC07GF103J	
1A5R39		RESISTOR: MIL type RC07GF562J	
1A5R40		RESISTOR: MIL type RC07GF563I	
1A5R41		RESISTOR: MIL type RC07GF153J	
1A5R42		Same as 1A5R3	
1A5R43,			
1A5R44		Same as 1A5R38	
1A5R45		Same as 1A5R39	
1A5R46		Same as 1A5R40	
1A5R47		Same as lasR3	
1A5R48		RESISTOR: MIL type RC07GF472j	
1A5R49		RESISTOR: MIL type RC07GF223J	
1A5R50		Same as 1A5R1	
1A5R51-			
1A5R54		Same as 1A5R41	
1A5R55		RESISTOR: MIL type RC07GF104J	
1A5R56		Same as 1A5R2	
1A5R57		Same as 1A5R3	
1A5R58		Same as lasR8	
1A5R59		Same as 1A5R2	
1A5R60		Same as 1A5R3	
1A5R61		Same as 1A5R8	
1A5R62		Same as 1A5R2	
1A5R63		Same as lasR3	
1A5R64		Same as lasR8	
1A5R65		Same as 1A5R2	
1A5R66		Same as 1A5R38	
1A5R67		Same as 1A5R39	
1 A5R68		Same a s 1A5R40	
1A5T69		Same as lasR3	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

ASSEMBLY 1A6 CIRCUIT CARD ASSEMBLY

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A6		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; D80195050 (96238)	5-12
1 A 6 CRI		SEMICONDUCTOR: MIL type 1N277	
1 A 6 CR 2		SEMICONDUCTOR: MIL type lN914	
1 A6CR3		Same as la6CR2	
$1 \mathrm{~A} 6 \mathrm{CR} 4-$			
$\begin{aligned} & \text { 1A6CR6 } \\ & \text { 1A6CR7- } \end{aligned}$		Same as la6CR1	
$1 \mathrm{~A} 6 \mathrm{CR9}$		Same as 1A6CR2	
$1 \mathrm{~A} 6 \mathrm{CR1} 0$,			
$1 \mathrm{~A} 6 \mathrm{CR11}$		Same as 1A6CR1	
1A6CR12-		Same as lA6CR2	
$1 \mathrm{~A} 6 \mathrm{CR1} 14$ $1 \mathrm{~A} 6 \mathrm{CR1}$		Same as 1A6CR2	
1 A6CR18		Same as 1A6CRl	
1A6CR19,			
1 A 6 CR 20		Same as 1A6CR2	
1A6CR21,		Same as 1A6CR1	
$1 A 6 C R 22$ $1 A 6 C R 23$,		Same as la6CRI	
1 A 6 CR 24		Same as 1A6CR2	
1 A6CR25-			
1A6CR27 1A6CR28-		Same as 1A6CRI	
$1 A 6 C R 28-1$ 1 A6CR30		Same as 1A6CR2	
1A6CR31,			
1 A6CR3 2		Same as 1A6CRl	
1A6CR33-			
1 A6CR35		Same as 1A6CR2	
1A6CR3 6- 1A6CR39		Same as lA6CRI	
1 A 6 CR 40 ,			
1 A6CR41		Same as la6CR2	
1A6CR42		Same as 1A6CRl	
1 A 6 Cl		CAPACITOR: MIL type CM05FDl01J03	
$\begin{aligned} & 1 \mathrm{~A} 6 \mathrm{C} 2- \\ & 1 \mathrm{~A} 6 \mathrm{C} 20 \end{aligned}$		Same as la6Cl	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
$1 \mathrm{A6C21}$		CAPACITOR: MIL type CS13BE156M	5-12
1A6C22,			
$1 \mathrm{A6C} 23$		Same as 1A6C21	
1A6MP1		INSULATOR,DISK: Nylon, 0.350 in . outside diameter; 0.200 in . inside diameter; type RC-T01800-1A (24227)	
1 A6MP2-			
1A6MP16		Same as lA6MPI	
1A6Q1-			
1A6Q16		TRANSISTOR: MIL type 2N706	
1A6R1		RESISTOR: MIL type RC07GF152J	
1A6R2		RESISTOR: MIL type RC07GF182J	
1 A6R3		RESISTOR: MIL type RC07GF472J	
1 A6R4		RESISTOR: MIL type RC07GF392J	
1A6R5		RESISTOR: MIL type RC07GF683J	
1A6R6,			
1A6R7		Same as la6R4	
1A6R8		RESISTOR: MIL type RC07GF473J	
1A6R9		Same as labr2	
1 A6R10		Same as 1A6R3	
1 A6R11		Same as 1A6R2	
1A6R12		Same as lA6R3	
1A6R13		Same as la6R4	
1A6R1 4		Same as labR5	
1A6R15,			
1A6R16		Same as 1A6R4	
1A6RI 7		Same as la6R8	
1A6R18		Same as 1A6R3	
1A6R19		Same as 1A6R2	
1A6R20		Same as 1A6R3	
1 A 6 R 21		RESISTOR: MIL type RC07GF682J	
1A6R22		Same as labr 4	
1A6R23		Same as 1A6R2	
1 A R24,			
1A6R25		Same as labr3	
1A6R26		Same as 1A6R4	
1A6R27		Same as la6R5	
1A6R28,			
1A6R29		Same as 1A6R4	
1A6R30		Same as 1A6R8	
1A6R31		Same as lA6R2	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \mathrm{NO} . \end{aligned}$
1A6R32		Same as 1A6R3	5-12
1A6R33		Same as la6R2	
1A6R34		Same as la6R3	
1A6R35		Same as la6R4	
1A6R36		Same as lA6R5	
1A6R37,			
1A6R38		Same as 1A6R4	
1A6R39		Same as 1A6R8	
1A6R40		Same as labr2	
1A6R41		Same as labr3	
1A6R42		Same as lA6R2	
1A6R43		Same as la6R3	
1A6R44		Sameas 1A6R4	
1A6R45		Same as 1A6R5	
lA6R46,			
IA6R47		Same as la6R4	
IA6R48		Same as labr8	
1A6R49		Same as 1A6R2	
1A6R50		Same as 1A6R3	
1A6R51		Same as 1A6R2	
1A6R52		Same as 1A6R3	
1A6R53		Same as lA6R4	
1A6R54		Same as lA6R5	
1A6R55,			
1A6R56		Same as 1A6R4	
1A6R57		Same as 1A6R8	
1A6R58		Same as 1A6R3	
1A6R59		Same as 1A6R2	
1A6R60		Same a s la6R3	
1A6R61		Same as lagr2l	
1A6R62		Same as 1A6R4	
1A6R63		Same as 1A6R2	
1A6R64,			
1A6R65		Same as la6R3	
1A6R66		Same as la6R4	
1A6R67		Same as 1A6R5	
1A6R68,			
1 A6R69		Same as 1A6R4	
1 A6R70		Same as lA6R8	
1A6R71		Same as 1A6R2	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG .	NOTES	NAME AND DESCRIPTION	FIG. NO.
1A6R72,			5-12
1A6R73		Same as 1A6R3	
1A6R74		Same as lA6R2	
1A6R75		Same as 1A6R4	
1A6R76		Same as 1A6R5	
1A6R77.			
1A6R78		Same as 1A6R4	
1A6R79		Same as 1A6R8	
1A6R80		Same as lA6R2	
1A6R81		Same as la6R3	

ASSEMBLY 1 A7 CIRCUIT CARD ASSEMBIY

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A7		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; D80195080 (96238)	5-14
1A7CRI		SEMICONDUCTOR: MIL type lN914	
1A7CR2		Same as 1A7CRI	
1A7CR3		SEMICONDUCTOR: MIL type IN277	
1 A7CR4		Same as la7crl	
1A7CR5,			
1A7CR6		Same as 1A7CR3	
1A7CR7,			
1A7CR8		Same as la7CRI	
1A7CR9-			
1A7CR47		Same as la7cr3	
1 A7CR48,			
1A7CR49		Same as la7CRI	
1A7CR50-			
1A7CR74 1A7Cl		Same as 1A7CR3	
1 A 7 Cl $1 \mathrm{~A} 7 \mathrm{C} 2-1 \mathrm{~A}$		CAPACITOR: MIL type CM05FD101J03 Same as 1A7Cl	
1 A 7 C 8		CAPACITOR: MIL type CSI3BE156M	
1A7C9,			
1A7C10		Same as 1A7C8	
1 A 7 MPl		INSULATOR, DISK: Nylon, 0.350 in. outside diameter; 0.200 in. inside diameter; type RC-T01800-1A (24227)	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	FIG. NO.
1A7MP2-			5-14
1 A7MP13		Same as 1A7MPl	
1A7Q1		TRANSISTOR: MIL type 2N706	
1A7Q2-			
1A7Q5		Same as 1A7Q1	
1A7Q6		TRANSISTOR: MIL type 2N2222	
1A7Q7		Same as 1A7Q1	
1A7Q8		Same as 1A7Q6	
1A7Q9-			
1A7Q13		Same as 1A7Q1	
1A7R1		RESISTOR: MIL type RC07GF273J	
1A7R2		Same as 1A7R1	
1A7R3		RESISTOR: MIL type RC07GF562J	
1A7R4		RESISTOR: MIL type RC07GF332J	
1A7R5		RESISTOR: MIL type RC07GF683J	
1A7R6		Same as 1A7R5	
1A7R7,			
1A7R8		Same a s lA7R4	
1A7R9-			
1A7R11		Same as 1A7R3	
1A7R12		Same as la7R4	
1A7R13		Same as la7R5	
1A7R14		Same as 1A7R3	
1A7R15		Same as 1A7R5	
1A7R16		Same as la7R4	
1A7R17		Same as 1A7R3	
1A7R18		RESISTOR: MIL type RC07GF103J	
1A7R19		Same as 1A7R18	
1A7R20,			
1A7R21		Same a s lA7R3	
1A7R22		RESISTOR: MII type RC07GF473J	
1A7R23		Same as lA7R22	
1A7R24		RESISTOR: MIL type RC07GF272J	
1A7R25		Same as 1A7R24	
1A7R26		RESISTOR: MIL type RC07GF182J	
1A7R27		Same as 1A7R26	
1A7R28,			
1A7R29		Same as 1A7R18	
1A7R30, 1A7R31		Same as 1A7R24	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A7R32		RESISTOR: MIL type RC07GF2235	5-14
1A7R33-			
1A7R39		Same as 1A7R32	
1A7R40		Same as 1A7R18	
1A7R41		RESISTOR: MIL type RC07GF823J	
1A7R42		RESISTOR: MIL type RC07GF333J	
1A7R43		RESISTOR: MIL type RC07GF3925	
1A7R44		Same as 1A7R43	
1A7R45		Same as 1A7R4	
1A7R46,			
1A7R47		Same as 1A7R5	
1A7R48		Same as 1A7R4	
1A7R49		Same as 1A7R43	
1A7R50-			
1A7R5 7		Same as 1A7R32	
1A7R58		Same as lA7Rl8	
1A7R59		Same as lA7R41	
1A7R60		Same as 1A7R42	
1A7R61		Same as 1A7R43	
1A7R62		Same as 1A7R3	
1A7R63		Same as 1A7R43	
1A7R64		Same as la7R5	
1A7R65		Same as 1A7R26	

ASSEMBLY 1 A8 CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A8		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; 80195060-001 (96238)	5-17
1 ABCRI		SEMICONDUCTOR: MIL type lN277	
1 A 8 CR 2		SEMICONDUCTOR: MIL type 1N914	
1A8CR3-			
1A8CR5		Same as 1A8CR2	
1A8CR6,			
1A8CR7		Same as la8CRI	
1A8CR8- 1A8CR11		Same as 1A8CR2	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A8CR12,			5-17
1A8CR13		Same as lA8CRl	
1A8CR14-			
1A8CR17		Same as 1A8CR2	
1A8CR18,			
1 A8CR19		Same as 1A8CRI	
1A8CR20-			
1A8CR23		Same as 1A8CR2	
1A8CR24		Same as la8CRl	
1 A 8 Cl 1		CAPACITOR: MIL type CM05FDl01j03	
1A8C2-			
$1 \mathrm{ABC4}$		Same as 1A8Cl	
1 A 8 C 5		Not used	
$1 \mathrm{A8C6}-$			
1 A 8 C 9		Same as 1A8Cl	
1 A 8 Cl 10		Not used	
$1 \mathrm{A8C11-}$			
$1 \mathrm{A8Cl} 4$		Same as 1A8Cl	
1 ABCl 5		Not used	
$1 \mathrm{A8Cl} 6-$			
$1 \mathrm{A8C19}$		Same as li8Cl	
1 A 8 C 20		Not used	
$1 \mathrm{~A} \mathrm{C}^{\text {c }} 1$		CAPACITOR: MIL type CSI3BE225M	
1 ABC 22		CAPACITOR: MIL type CS13BE156M	
1 A 8 C 23,			
1 ABC 24		Same as 1A8C22	
$1 \mathrm{~A} 8 \mathrm{MP1}$		INSULATOR,DISK: Nylon, 0.350 in. outside diameter; 0.200 in. inside diameter; type RC-T01800-1A (24227)	
1 A8MP2-			
1 A8MP13		Same as lA8MP1	
1A8Q1		TRANSISTOR: MIL type 2 N 706	
1A8Q2-			
$1 A 8 Q 12$		Same as 1A8Q1	
1A8Q13		TRANSISTOR: MIL type 2N2222	
1 A 8 Rl		RESISTOR: MIL type RC07GF222J	
1A8R2		RESISTOR: MIL type RC07GF272J	
1A8R3		RESISTOR: MIL type RC07GF103I	
1A8R4		Same as la8R3	
1A8R5		RESISTOR: MIL type RC07GF562J	
1A8R6		RESISTOR: MIL type RC07GF104J	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A8R7		Same as 1A8R5	5-17
1A8R8		Same as 1A8R3	
1A8R9		Same as la8R5	
1A8R10		RESISTOR: MIL type RC07GF563j	
1A8RIl		Same as 1A8R2	
IA8R12		Same as 1A8R3	
1A8R13		RESISTOR: MIL type RC07GF392J	
1A8R14		RESISTOR: MIL type RC07GF6831	
1A8R15		RESISTOR: MIL type RC07GF153J	
1A8R16		RESISTOR: MIL type RN65C7503F	
1 A8R17		Same as la8R2	
1A8RI8,			
1A8R19		Same as 1A8R3	
1A8R20		Same as la8R5	
1A8R21		Same as larR6	
1A8R22		Same as 1A8R5	
1A8R23		Same as la8R3	
1A8R24		Same as 1A8R5	
1A8R25		Same a s lA8R10	
1A8R26		Same as lA8R2	
1A8R27		Same as 1A8R3	
1A8R28		Same as 1A8R13	
1A8R29		Same as 1A8R14	
1A8R30		Same as 1A8Rl5	
1A8R31		RESISTOR: MIL type RN60C3743F	
1A8R32		Same as 1A8R2	
1 A8R33,			
1A8R3 4		Same as 1A8R3	
1A8R35		Same as lA8R5	
1A8R36		Same as 1A8R6	
1A8R37		Same as 1A8R5	
1A8R3 8		Same as 1A8R3	
1 A8R39		Same as la8R5	
1 A8R40		Same as lA8R10	
1 A8R41		Same as 1A8R2	
1A8R42		Same as la8R3	
lA8R43		Same as 1A8R13	
1A8R44		Same as 1A8R14	
1A8R45		Same as 1A8Rl5	
1A8R46		RESISTOR: MIL type RN60C1873F	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A8R47		Same as 1A8R2	5-17
1A8R48,			
1A8R49		Same as la8R3	
1 A8R50		Same as la8R5	
1 A8R51		Same as la8R6	
1A8R52		Same as IA8R5	
1 A8R53		Same as la8R3	
1 A8R5 4		Same as la8R5	
1A8R55		Same as 1A8R10	
1A8R56		Same as la8R2	
1 A8R5 7		Same as 1A8R3	
1A8R58		Not used	
lA8R59		Same as 1A8R13	
IA8R60		Same as lA8Rl4	
1 A8R61		Same as la8R15	
1 A8R62		Same as la8R31	
1A8R63		Same as 1A8R13	
1A8R64		Same as lA8R2	
1 A8R65		RESISTOR: MIL type RC07GF333J	
1A8R66		RESISTOR: MIL type RC07GF271J	

ASSEMBLY 1A9 CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF. } \\ \text { DEISG. } \end{gathered}$	NOTES	NAMES AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A9		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; D80195060-002 (96238)	5-17
$1 \mathrm{~A} 9 \mathrm{CR1}$		SEMICONDUCTOR: MIL type 1N277	
1 A 9 CR 2		SEMICONDUCTOR: MIL type 1N914	
1 A9CR3-			
1 A9 CR5		Same as 1A9CR2	
1A9CR6,			
$1 \mathrm{A9CR} 7$		Same as la9CRI	
1 199CR8-			
1 A9CRl1		Same as 1A9CR2	
1A9CR12 1A9CR13		Same as 1A9CRI	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
1A9CR14-			5-17
1 A9CR17		Same as 1A9CR2	
1A9CRI8,			
1A9CR19		Same as 1A9CRI	
1A9CR20-			
1 A9CR23		Same as lA9CR2	
1A9CR24		Same as lag CRI	
$1 \mathrm{A9Cl}$		CAPACITOR: MIL type CM05FD101J03	
1A9C2-			
1A9C4		Same as 1A9Cl	
1A9C5		Not used	
1A9C6-			
$1 \mathrm{A9C9}$		Same as 1A9Cl	
$1 \mathrm{A9Cl} 0$		Not used	
1A9Cll-			
$1 \mathrm{A9Cl} 4$		Same as 1A9Cl	
$1 \mathrm{A9Cl} 5$		Not used	
$1 \mathrm{A9Cl} 6-$			
$1 \mathrm{A9Cl} 9$		Same as 1A9Cl	
$1 \mathrm{A9C20}$		Not used	
$1 \mathrm{A9C21}$		CAPACITOR: MIL type CS13BE225M	
$1 \mathrm{A9C22}$		CAPACITOR: MIL type CS13BE156M	
1A9C23,			
1 A 9 C 24		Same as 1A9C22	
$1 \mathrm{A9MPI}$		INSULATOR,DISK: Nylon, 0.350 in. outside diameter; 0200 in. inside diameter; type RC-T01800-1A (24227)	
1A9MP2-			
1A9MP12		Same as la9MP1	
1A9Q1		TRANSISTOR: MIL type 2N706	
1A9Q2-			
1A9Q11		Same as 1A9Ql	
1A9Q12		Not used	
1A9Q13		TRANSISTOR: MIL type 2N2222	
1 A9R1		RESISTOR: MIL type RC07GF222J	
1 A9R2		RESISTOR: MIL type RC07GF272J	
1 A9R3		RESISTOR: MIL type RC07GF103J	
1A9R4		Same as la9R3	
1A9R5		RESISTOR: MIL type RC07GF562J	
1A9R6		RESISTOR: MIL type RC07GF104J	
1A9R7		Same as 1A9R5	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A9R8		Same as 1A9R3	5-17
1A9R9		Same as lagrs	
1A9R10		RESISTOR: MIL type RC07GF563J	
1A9RII		Same as 1A9R2	
1A9R12		Same as 1A9R3	
1A9R13		RESISTOR: MIL type RC07GF39 2J	
1A9R14		RESISTOR: MIL type RC07GF683J	
1A9R15		RESISTOR: MIL type RC07GF153J	
1A9R16		RESISTOR: MIL type RN60C7502F	
1A9R17		Same as lA9R2	
1A9R18,			
1A9R19		Same as la9r3	
1A9R20		Same as la9R5	
1 A9R21		Same as lagr6	
1A9R22		Same as lagr5	
1A9R23		Same as lagr3	
1A9R24		Same as la9R5	
1A9R25		Same as la9rio	
1A9R26		Same as lagr2	
1A9R27		Same as la9R3	
1A9R28		Same as 1A9Rl3	
lA9R29		Same as 1A9R14	
1A9R30		RESISTOR: MIL type RC07GF223J	
1A9R31		RESISTOR: MIL type RN60C3742D	
1A9R32		Same as 1A9R2	
1A9R33,			
1A9R34		Same as 1A9R3	
1 A9R35		Same as lagr5	
1A9R36		Same as la9R6	
1A9R37		Same as la9R5	
1A9R38		Same a s lA9R3	
1A9R39		Same as lagr5	
1A9R40		Same as 1A9R10	
1A9R41		Same as la9R2	
1A9R42		Same as lagr3	
1A9R43		Same as 1A9R13	
1A9R44		Same a s lA9R14	
1A9R45		RESISTOR: MIL type RC07GF473J	
1A9R46		RESISTOR: MIL type RN60C1872D	
1A9R47		Same as 1A9R2	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A9R48,			5-17
1A9R49		Same as la9R3	
1A9R50		Same as 1A9R5	
1A9R51		Same as 1A9R6	
1A9R52		Not used	
1A9R53		Same as 1A9R3	
1A9R54		Same as la9R5	
1A9R55		Same as lagrio	
1A9R56		Same as 1A9R2	
1A9R5 7		Same as lagr3	
1A9R58		RESISTOR: MIL type RC07GF333I	
1A9R59-			
1A9R62		Not used	
1A9R63		Same as lA9R13	
1A9R64		Same as lagr2	
1A9R65		Same as 1A9R58	
1A9R66		RESISTOR: MIL type RC07GF271J	

ASSEMBLY 1 Al0 CIRCUIT CARD ASSEMBLY

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
1 A10		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; D80281290 (96238)	5-19
$1 \mathrm{Al0CR1}$		SEMICONDUCTOR: MIL type 1N277	
1A10CR2		SEMICONDUCTOR: MIL type lN753A	
1A10CR3		Same as 1Al0CR2	
1A10CR4		Same as lalocri	
1 A10CR5		SEMICONDUCTOR: MIL type 1 N825	
1A10CR6		Same as 1A10CR2	
1 Al0CR7		SEMICONDUCTOR: MIL type 1N645	
1A10CR8		Same as lal0crl	
1A10CR9		SEMICONDUCTOR: MIL type 1N914	
$1 \mathrm{Al0CR10}$		Same as lalocrg	
1 AlOCl		CAPACITOR: MIL type CP05Al KBl04K3	
1 AlOC 2		CAPACITOR: MIL type CS13BD226M	
$1 \mathrm{AlOC3}$		CAPACITOR,FIXED, CERAMIC: 0.1 uf $+80 \%,-20 \%$, 25vdcw; type 5815Y5U104Z (72982)	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	FIG. NO.
$1 \mathrm{Al0C4}$		CAPACITOR: MIL type CSI3BE156M	5-19
$1 \mathrm{Al0C5}$		Same as 1Al0C2	
$1 \mathrm{Al0C6}$		CAPACITOR: MIL type CSI3BC336M	
$1 \mathrm{Al0C7}$		Same as 1A10C6	
1A10C8		Same as 1A10C2	
$1 \mathrm{Al0C9}$		CAPACITOR: MIL type CS13BF476M	
$1 \mathrm{Al0MP1}$		INSULATOR,DISK: Nylon, 0.350 in. outside diameter; 0.200 in . inside diameter; type RC-T01800-1A (24227)	
$1 \mathrm{AlOMP2-}$			
$1 \mathrm{Al0MP16}$		Same as 1A10MP1	
1A10MP17		HEAT SINK: 0.255 in . inside diameter; 1.280 in . outside diameter; 0.437 in . high, flex fin desig, beryllium copper; type NF209 (05820)	
1A10MP18- 1A10MP20		Same as 1A10MP17	
$1 \mathrm{Al} 0 \mathrm{Q1}$		TRANSISTOR: MIL type 2N2907	
1A10Q2		TRANSISTOR: MIL type 2N2905	
$1 \mathrm{Al0Q3}$		Same as 1A10Q1	
$1 \mathrm{Al0Q4}$		TRANSISTOR: MIL type 2N930	
1A10Q5		Same as 1Al0Q4	
1A10Q6		TRANSISTOR: MIL type 2N. 404	
lal0Q7.			
1A10Q8		Same as lAl0Q1	
1A10Q9		TRANSISTOR: MIL type 2N1613	
$1 \mathrm{Al0Q10}$		Same as 1Al0Q9	
1A10Q11		TRANSISTOR: MIL type 2N2222	
1A10Q12,			
1A10Q13		Same as 1A10Q9	
1A10Q14		Same as 1A10Q1I	
1A10Q15,			
1A10Q16		Same as 1A10Ql	
1A10R1		RESISTOR: MIL type RC07GF181J	
1A10R2		RESISTOR: MIL type RC07GF333J	
1A10R3		RESISTOR: MIL type RC07GF621J	
IA10R4		RESISTOR: MIL type RC07GF242J	
IA10R5		RESISTOR: MII type RC07GF182J	
1A10R6		RESISTOR: MII type RC07GF472J	
1AIOR7		RESISTOR: MIL type RN65C4020F	
1A10R8		RESISTOR: MIL type RT11C2P500	
1A10R9		RESISTOR: MIL type RN65C2740F	

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1A10R10		RESISTOR: MIL type RC07GF273J	5-19
1A10RII		RESISTOR: MIL type RC07GF153J	
1A10R12		RESISTOR: MIL type RC07GF102J	
1A10R13		RESISTOR: MIL type RN60D6810F	
1AIORI 4		RESISTOR: MIL type RC07GF103J	
1A10R15		RESISTOR: MIL type RN55D4320F	
1A10R16		RESISTOR: MIL type RN55D3920F	
1A10R17		Same as lillorl	
1A10R18		RESISTOR: MIL type RTIlC2P501	
1A10R19		RESISTOR: MIL type RN55D1501F	
1A10R20		RESISTOR: MIL type RC07GF222J	
1A10R21		RESISTOR: MIL type RC07GF272J	
1A10R22		RESISTOR: MIL type RC07GF102J	
1A10R23		RESISTOR: MIL type RC07GF101J	
1A10R24		Same as lalorl2	
1A10R25		Same as lalor2l	
1A10R26		RESISTOR: MIL type RC07GF471J	
1A10R27		RESISTOR: MIL type RC42GF330J	
1A10R28		RESISTOR: MIL type RC20GF3R9]	
1A10R29		Same as lalor28	
1A10R30		Same as lalor26	
1A10R31		RESISTOR: MIL type RC07GF152J	
1A10R32,			
1A10R33		Same as lal0R23	
1A10R34		RESISTOR: MIL type RC07GF393J	
1A10R35		Same as 1A10R12	
1A10R36		RESISTOR: MIL type RC07GF562J	
1A10R3 7		RESISTOR: MIL type RC20GF152J	
1.A10R38		RESISTOR: MIL type RTll C2P201	
1A10R39		RESISTOR: MIL type RC07GF681J	
1A10R40		RESISTOR: MIL type RC07GF821J	

ASSEMBLY lAll EXTENDER CARD ASSEMBLY

REF. DESIG.	NOTES	FIG . NO.	
1 NAII		EXTENDER CARD ASSEMBLY: Consists of a printed- Circuit board which mounts and supplies the circuitry for the below listed item; D80195120 (96238) CONNECTOR: MIL type M21097-1-163	$5-1$
IAl1JI			

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

ASSEMBLY 1 Al2 HARNESS CARD ASSEMBLY

ASSEMBLY 1 Al 3 CIRCUIT CARD ASSEMBLY

REF. DESIG.	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A13		CIRCUIT CARD ASSEMBLY: Consists of a printed-circuit board which mounts and supplies the circuitry for the below listed items; C80195190 (96238)	5-22
$1 \mathrm{Al3CR1}$		SEMICONDUCTOR: MIL type 1N645	
1A13CR2		Same as lal3 CRl	
1Al3R1		RESISTOR: MIL type RC32GF513J	
1A13R2		RESISTOR: MIL type RN65D66R5F	
1A13R3		RESISTOR: MIL type RN65D2000F	
1A13R4		Not used	
1A13R5		RESISTOR: MIL type RW69VR22	

ASSEMBLY 1 AI 4 CONVERTER TELEGRAPH SIGNAL

REF. DESIG.	NOTES	NAME AND DESCRIPTION	FIG. NO.
IA14		Plug-in, bolt-down electronic relay; A48092015(96238)	$5-1$

TABLE 6-2. TEST SET, TELEGRAPH TS-2616/UGM MAINTENANCE PARTS LIST (Cont'd)

ASSEMBLY IA15 CRYSTAL HOLDER

$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
1 A15		COMPONENT BOARD ASSEMBLY (FIXED): Consists of a shock-mounted board and mounts the below listed items; C90195003 (96238)	5-24
1A15R1		RESISTOR: MIL type RC07GFl21J	
1A15R2		RESISTOR: MIL type RC07GF680J	
1A15R3		Same as lal 5 Rl	
1A15R4		RESISTOR: MIL type RC07GF560]	
$1 \mathrm{Al} 5 \mathrm{XY1}$		SOCKET, CRYSTAL: cadmium plated holding clip, phosphor bronze contacts, gold over silver plating, teflon insulation; type 8000AG4 (91506)	
$\begin{aligned} & \text { 1A1 5XY2- } \\ & \text { 1A15XY6 } \end{aligned}$		Same as 1A15XYl	
1A15Y1		CRYSTAL UNIT, QUARTZ: 1164.800 kHz , resonant frequency; type 40040066-007 (96238)	
1 Al 5 Y 2		CRYSTAL UNIT,QUARTZ: 949.760 kHz resonant frequency; type 40040066-002 (96238)	
1A15Y3		CRYSTAL UNIT, QUARTZ: 960.000 kHz resonant frequency; type 40040066-003 (96238)	
1A15Y4		CRYSTAL UNIT, QUARTZ: 1056.000 kHz resonant frequency; type 40040066-004 (96238)	
1A15Y5		CRYSTAL UNIT, QUARTZ: 1090.560 kHz , resonant frequency; type 40040066-005 (96238)	
1A15Y6		CRYSTAL UNIT, QUARTZ: 1173.120 kHz , resonant frequency; type 40040066-006 (96238)	

TABLE 6-3. LIST OF MANUFACTURERS

MFR CODE	NAME	ADDRESS
05820	Wakefield Engineering, Inc.	Wakefield, Massachusetts
24227	Tekna Products Co.	Rochester, New York
71785	Cinch Mfg. Co. and Howard	
	B. Jones Div.	Chicago, Illinois
72259	Essex Electronics, Inc.	Berkeley Heights, New Jersey
72982	Erie Technological Products, Inc.	Erie, Pennsylvania
81349	Military Specifications	
96238	STELMA, Incorporated	Stamford, Connecticut
96906	Military Standard	

USER ACTIVITY TECHNICAL MANUAL COMMENT SHEET
NAVSHIPS 5600/2(REV. 9/67)
(rormerly NAVSHIPS 4914)
(COG I - 11-DIGIT STOCK NUMBER: 0105-503-9850)
NAVSHIPS NO. 0969-125-7010 VOLUME NO. \qquad
(Fold on dotted line on reverse side, staple, and mail to NAVELEX)

PROBLEM AREA:

DEPARTMENT OF THE NAVY NAVAL ELECTRONIC SYSTEMS COMMAND

WASHINGTON, D.C. 20360
$\overline{\text { OFFICIAL BUSINESS }}$

POSTAGE AND FEES PAID NAVY DEPARTMENT

COMMANDER, NAVAL ELECTRONIC SYSTEMS COMMAND TECHNICAL PUBLICATIONS BRANCH DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360

[^0]:

