STUDENT 'S NOTEBOOK
FOR
MAINTENANCE AND REPAIR TRAINING AN/URT-2, AN/URT-3, AND AN/URT-4

RESTRICTED

Prepared by
FEDERAL ELECTRIC CORPORATION
100 Kingsland Road Clifton, New Jersey

FOREWORD

The material contained in this book has been carefully selected from previous courses given on this subject. It is believed it offers the maximum assistance to the student in understanding the AN/URT-2, AN/URT-3, and AN/URT-4 Radio Transmitting Sets.

In using the course material included in this book it is assumed that the U.S.Navy will provide the studenti with a copy of the INSTRUCTION BOOK FOR RADIO TRANSMITTING SETS AN/URT-2, AN/URT-3, and AN/URT-4. Wherever supplemental material seems desirable as a training ald, it has been included. This supplemental material includes descriptive material, lists, tables and such other training aids as have been found helpful in previous courses.

The writers of this course feel that additional forms or methods of presentation may be developed by some instructors, and are most interested in receiving comments from each school concerning any material which the instructors or their students feel will materially assist in the presentation of future courses on this subject. All comments should be addressed through proper channels to Code 992, Bureau of Ships, for military personnel; and to Code 724, Bureau of Ships, for civilian perm sonnel of the Department of the Navy.

In pursuing this course, the student is preparing to assist materially the Department of the Navy in their continuing program of maintaining and improving the efficiency of Naval commuications. In order that Naval personnel may be fully capable of handling any emergency, extreme care should be exercised in taking notes and in preparing sketches, lists and tables.

Unless it is contrary to current regulations, each student should be permitted to retain this notebook during the time he is engaged in electronics activities for the Bureau of Ships. This notebook is classified as RESTRICTED, and must be handled in conformance with security regulations governing the handling of such classified matter.

CURRICULUM

LECTURESHOPHOURSNUMBER EXERCISETITLEALLOTTED
1st Week
1
1 Demonstration of the AN/URT-2, -3, and -4 1Radio Transmitting Sets in Operation
Functional Description2
2 General Familiarization 3
Introduction to the Radio Frequency 4Oscillator
3 Radio Frequency Oscillator and Control 4 CircuitsRadio Frequency Oscillator Control4System Analysis
Introduction to the Low Level Radio 4
Modulator
4 Low Level Radio Modulator Identification 2Introduction to the High Level Radio1Modulator
5 High Level Radio Modulator Identification 1
Introduction to the Radio Frequency 2 Amplifier
6 Radio Frequency Amplifier Identification 2
Review No. 1 4
Examination No. 1 2
Review No. 2 2
2nd Week
Introduction to Power Supplies and Base 1 Mount
7 Control Circuits in Power Supplies and 3 Base Mount
Curriculum
Page 2
LECTURE SHOP TITLE TITLE ALLOTTED ALLOTTED
10 Equipment Checkout 4
11 Preventive Maintenance - Practice 4
Review No, 3 4
Examination No: 2 2
Review No. 4 2
3rd Week
14 Corrective Maintenance - Procedures 4
12 Corrective Maintenance - Practice 12
15 Special Circuits 4
13 Special Circuit Operation 4
14 System Control Circuits 8
Review No, 5 4
Examination No. 3 2
Review No. 6 2

Curriculum

Page 3

LECTURE NUMBER

SHOP
EXERCISE

4th Week

15 RFO and RFA Preventive Maintenance, 8 Corrective Maintenance, and Checkout
16 LLRM and HLRM Preventive Maintenance, 8 Corrective Maintenance, and Checkout
17 ATE Preventive Maintenance, Corrective 8 Maintenance, and Checkout
Review No。 7 8
Examination No: 4 4
Review No. 8 4

LIST OF WALL CHARTS FOR USE WITH FOUR WEEK COURSE of

MAINTENANCE AND REPAIR TRAINING $\mathrm{AN} / \mathrm{URT}-2$, $\mathrm{AN} / \mathrm{URT}-3$, AND AN/URT-4

Chart No.	Title	IB Fig. No.
1	Radio Transmitting Sets AN/URT $-2,-3$ and -4 , Functional Block Diagram	2-1
2	Radio Frequency Oscillator 0-153/URT, Functional Block Diagram	$2-3$
3	Radio Modulator MD $143 / \mathrm{URT}$, Block Diagram	2-64
4	Radio Frequency Amplifier AM-519/URT, Complete Block Diagram	2-100
5	Control Circuits Schematic Diagram, AN/URT-3 Transmitter Bay	$7-152$
6	Antenna Tuning Equipment, Functional Block Diagram	(ATE) $2-1$
7	Antenna Tuning Equipment, Schematic Diagram	(ATE) $7-27$
8	Pictorial System Diagram, Radio Transmitting Set AN/URT-3	3-39
9	Interconnecting Wiring Diagram, AN/URT-3	3-51

> TOOLS AND TEST ERUIPMENT
> REQUIRED FOR FOUR-WERK COURSE
> of
> MAINTENANCE AND REPAIR TRAINING AN/URT-2, AN/URT-3, AND AN/URT-4

1. Standard Test Equipment Required
(a) ME-25A/U VIVM
(b) $\mathrm{ME}-48 \mathrm{~A}$ VOM
(c) $0 S m 8 \mathrm{~A} / \mathrm{U}$ Oscilloscope
(d) LAJ Audio Oscillator
(e) AN/USMm3 U.S. Navy Test Tool Set
2. Special Test Equipment Required
(a) RF Probe Voltmeter
(b) $R F$ Tuner Test Set
(c) Antenna Control Group Test Set
(d) 500 watt, 50 ohm Dummy Load
(e) Jumper Connector Set
3. Standard Tools Required
(a) Set of Socket Wrenches up to 9/16"
(b) Set of Open End Wrenches up to $3 / 8^{\prime \prime}$ with both 30° and 90° heads.
(c) One Thin Jaw 8" Adjustable Wrench
(d) One Stubby Screwdriver with a $1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime}$ blade $3 / 4^{\prime \prime}$ to $1^{\prime \prime}$ long,
(e) $4^{89} \times 1 / 8^{n 9}$ Screwdriver
(f) $4^{81} \times 1 / 4^{17}$ Screwdriver
(g) $8^{\text {" }} \times 1 / 8^{\prime \prime}$ Screwdriver
(h) $2 \frac{1}{2} \times 3 / 16^{n}$ Screwdriver
(i) $10^{11} \times 3 / 8^{19}$ Screwdriver
(j) 6^{18} Diagonal Pliers
(k) $6^{\prime \prime}$ Longnose Pliers
(1) 8^{11} Linesman's Pliers
(m) 10" Waterpump Pliers
(n) 6^{n} Gas Pliers
(o) Pencil Soldering Iron, Assorted Tips
(p) 100-watt to 150-watt Soldering Iron
(q) Stands for (o) and (p)

4: Special Tools Required
It is expected that all special tools will be supplied with the transmitter.
5. Other Items

In certain parts of Sections 6 and 7, requirements are stated for resistors, capacitors, plugs, jacks and other similar items. These items are not listed here and must be requisitioned by the instructor as required.

LESSON SHEET NO. 1

Time Allotted: - 2 Hours

SUBJECT:

OBJECTIVE: To provide an overall picture of the AN/URT-() Radio Transmitting Sets.
Introduction to the AN/URT $-2,-3$, and -4 Radio Transmitting Sets.

INTRODUCTION: The AN/URT $-2, A N / U R T-3$ and $A N / U R T-4$ Radio Transmitting Sets are formed from a number of identical interchangeable major components which are used like building blocks to assemble a set with desired features. Though necessary differences exist in the interconnecting wiring of the various chassis groups, the major component units forming each chassis group are identical. The Sets units forming each chassis group are identical. ship, shore or ground station usage, in which frequency change and tuning adjustments are relatively simple and installation flexibility is provided by unitized construction.

The AN/URT-() series of Radio Transmitting Sets are more completely automatic than any other transmitter of similar frequency range ever before manufactured. A new and very precise frequency determining method is incorporated in the AN/URT-() Radio Transmitting Sets. Some complication is to be expected in the various Sets since servomechanisms are included to perform tuning operations normally manually performed. However, the severe program of Navy tests and inspections, plus the built-in indicator lamps, meters, and oscilloscope, has led to an equipment wherein trouble may be quickly localized and corrected. A particularly important part of the AN/URT-() Radio Transmitting Set is the Antenna Tuning Equipment, which achieves a radiation efficiency when used with a recommended antenna greater than that ever previously achieved over such a wide frequency range.

SUBJECT MATERIAL:正
l. Display equipment, photograph, or a drawing of the equipment. (Figures $1-1,1-2$, or 1×3 may be projected with an opaque projector).
2. Cover the Basic Features. (Pages 1-1 through 1-5).
3. Refer to Table $1-1$ and point out the quantity of major units for the AN/URT $-2,-3$, and -4 . Note that certain items must be ordered separately from Navy depots.
4. Discuss the possibilities of converting from AN/URT-2 to $\mathrm{AN} / \mathrm{URT}-3$ and from $\mathrm{AN} / \mathrm{URT}-3$ to $\mathrm{AN} / \mathrm{URT}-4$.
RESTRICTED

Lesson Sheet No: 1
Page 2.
5. Point out the component units of the Transmitter Group, the Booster, and the Antenna Tuning Equipment, Draw attention to abbreviations used; e.g., HVPS for Power Supply PP-707/URT. (Refer to Table 1-2).
6. Describe the Transmitter Group. (Refer to pages 1-7 and $1-10$).
7. Describe Mounting MT-958/URT. (Refer to pages 1-20 and 1 m 21).
8. Describe the Booster. (Refer to pages 1-21 and 1-22).
9. Describe Transmitter Control C-916/URT. (Refer to pages 1-24 and 1-25).
10. State the requirements for:
(a) Remote Control Unit
(b) Antennas
(c) Standard Test Equipment
(d) Special Test Equipment
(e) Test Cables, and
(f) Special Tools
(Note:- Refer to pages 1-31 through lm38).
11. Refer the student to the Reference Data on pages 1-39 through 1-49.

CONCLUSION: The basic information on the physical and electrical characteristics of the AN/URT-2, -3 , and -4 is available in condensed form on pages 1-39 through 1-49.

QUESTIONS
AND/OR
QRAL QUIZ:
Time permitting, student questions will be answered by the lecturer, and/or an oral quiz may be given.

Time Allotted: - 1 Hour

SUBJECT: Demonstration of the AN/URT- () Transmitters in Operation
OBJECTIVE: To demonstrate the operation of the AN/URT-2, 3 and/or 4Radio Transmitting Sets.
ERUIPMENT
RERUIRED: One (1) or more completely installed AN/URT-2, 3, and/or4 Radio Transmitting Sets.
PROCEDURE
(INSTRUCTOR):1. Point out Safety Equipment - Wall Chart on ArtificialRespiration Methods, First Aid Kit.
2. Distribute Safety Bulletins.
3. Assemble group or groups near set(s) to be operated.
INSTRUCTIONS
(INSTRUCTOR):
CONCLUSION:At this point, the lecturer will answer any questionswhich may be asked by the students.

Time Allotted: - 3 Hours

SUBJECT:	General Familiarization
OBJECTIVE:	To familiarize the student with the equipment, the location of major units and of components parts.
FQUIPMENT REQUIRED:	One (1) or more completely installed AN/URT-2, -3 , and/or -4 Radio Transmitting Sets.
PROCEDURE (INSTRUCTOR):	The students are shown how to remove each drawer from the bay(s).
INSTRUCTIONS:	1. Students will be directed to remove all drawers of transmitter(s)。
	2. The instructor will point out receptacles in rear of each drawer space and give correct circuit nomenclature.
	3. The instructor will explain interconnecting cabling inside bay(s).
	4. The instructor will draw attention to the base mount and location of blowers and air filters.
	5. Students will label each major unit on Figures l-l, 1-2, and 1-3 in the Instruction Book. With the assistance of the instructor, all fuses, controls and pilot lights will be located on or in each major unit and properly labeled.
	6. With the assistance of the instructor, the student will locate the input power connectors, the interconnection cabling and connectors between transmitter and antenna tuning equipment, the RF output connectors to the antenna, and control line terminals.
CONCLUSION:	After all work is completed and sketches have been checked by the instructor, students will replace and secure all drawers. panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

LESSON SHEET NO. 3
Time Allotted: - 4 Hours
SUBJECT: Introduction to the Radio Frequency Oscillator
OBJECTIVE: To introduce the basic concepts of Radio Frequency Oscillator 0-153/URT.

INTRODUCTION:
Radio Frequency Oscillator 0-153/URT is a complex unit only in that it is made up of many parts and covers a very wide frequency range with exceptional accuracy and stability of frequency. In this lecture the instructor will break the oscillator into component units so as to show the simplicity of design which provides for such accuracy and stability.

SUBJECT
MATERIAL:

1. The instructor will sketch that section of Figure 2-2 which refers to the RFO and explain the sketch (see para. (1), pages $2-6$ through $2-9$).
2. The student will be referred to Figures 1-13 through 1-16 or an RFO will be displayed before the class. The instructor will explain the following with appropriate references to the illustrative material:
(a) Interchangeability and plug-in of units.
(b) Controls on front panel (Unit 13).
(c) Inter-unit RF connections.
3. Display Figure $2-3$ and explain (see pages $2-17$ through 2-20).
4. The student will be referred to Figures $2-4$ through 2-42 as the instructor gives a basic analysis of each unit. (See $2-20$ through 2-68) 。

CONCLUSION:

QUESTIONS
AND/OR
ORAL QUIZ:

It should now be obvious that no "trick" circuits are incorporated in the RFO. Every circuit is a simple circuit similar to those circuits met previously by the student. Many of the circuits may be compared in principle to those seen in the mixer stage of the ordinary superhetrodyne receiver. Since the IF stages of the receiver act as a filter in the elimination of the original frequencies and any other undesired frequencies, the use of many filters in the RFO is to be expected. The only point which may not be obvious is that of the somewhat odd frequencies obtained from the individual component units. This is easily explained in that the most stable oscillator readily available is a 100 kc crystal controlled unit, the specification calls for a 60 db ratio between the desired frequencies and all undesired harmonics, and it was desirable to use components of reasonable size.

Student questions directly related to the RFO will be permitted, and/or an oral quiz may be given.

Time Allotted: - 4 Hours

SUBJECT:
OBJECTIVE:

EQUIPMENT
RERUIRED:

PROCEDURE:

CONCLUSION:

Radio Frequency Oscillator and Control Circuits
To familiarize the student with Radio Frequency Oscillator $0-153 / \mathrm{URT}_{8}$ the location and function of its component sub-unit chassis, the frame, and the location and function of front panel controls.

1. One, or more, Radio Frequency Oscillator(s) 0-153/URT.
2. One, or more, test cables for same.
3. At the request of the instructor, students will remove Radio Frequency Oscillator 0-153/URT from the transmitter bay.
4. With the assistance of the instructor, students will determine the location of all component chassis on equipment.
5. The instructor will point out that those units which couple to front panel knobs (Units 3, 6, and 8) must have their knobs retracted before the unit may be removed from the rack. The instructor will demonstrate how this is accomplished, and will further demonstrate that Units IIB and IIC can be plugged in or removed only when both switches are in the zero position.
6. The student will remove all units from the rack (Unit 14) under the supervision of the instructor.
7. The student will observe that all RF cables are part of Unit 14 (the rack), and the student will observe the nomenclature system used for connecting cables.
8. Under the supervision of the instructor, the student will re-assemble all units on Unit 14.
9. After 6 is completed, the instructor will demonstrate and explain the operation of a step motor.
10. The student will sketch the front panel, label all controls with the proper nomenclature and prepare a list showing the function of all controls.

After all work is completed and sketches and/or lists have been checked by the instructor, students will replace and secure all drawers, panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

Time Allotted: -4 Hours

SUBJECT:	RFO Control System Analysis
OBJECTIVE:	To analyze the control circuitry whereby the basic cir- cuits of Lesson Sheet No. 3 are integrated into a very flexible, wide wange source of radio frequency energy.

SUBJECT MATERIAL:
(Note:- The following material has been prepared to supplement that included in the Instruction Book, but in no way is intended to replace the Instruction Book, References to the Instruction Book are made throughout the lesson material).

1. The functions of the RFO Control System are as follows:
(a) Allows dialing any one of ten pre-set frequencies by the use of as many as four channel selector telephone dials (paret of Transmitter Control C-916/URT) at local or remote stations. In addition, channel frequencies may be changed while on the air.
(b) Permits setting up of frequencies by use of decade knobs in manual operation.
(c) Sends band information to the Radio Frequency Amplifier (RFA).
(d) Sends information to the RFA that frequency is being changed. After change is accomplished, the RFA is permitted to retune.
(e) Controls a relay at the input of the RFA to change the input impedance of the RFA at frequencies below 6 me.
(f) Homes step motors to the right position, and provides protection for step motors to prevent them from jamming or burning up.
2. A major part of the RFO Control System consists of the step switches. These operate in the following manner:
(a) Reference Figure 2-12: A step switch consists of a solenoid and plunger, an inclined plane, a ratohet, a wafer shaft, a homing wafer, an intermuptor switch, and a detent mechanism. When current flows through the coil of the solenoids the plunger is

Lesson Sheet No. 4
Page 2.
attracted axially; $i_{0} e_{0}$, to the right on Figure 2-12. By means of the inclined plane, the axial motion of the plunger is converted to a combination of short rotary motion and axial motion on the part of the left section of the ratchet. The axial portion of the plunger motion acts to engage the ratchet teeth while 30° of the about 45° of short rotary motion is used in moving the homing and rotor shafts (wafer shaft) to the next position of positive lock with the detent mechanism. The remaining 15° of short rotary motion is lost during the process of engaging the ratchet teeth. When the step switch has completed one step, the 150 VDC used to supply the solenoid coil is interrupted by the operation of the interruptor switch. The interruptor switch is mounted on the homing wafer and its contacts are opened by a bakelite cam mounted on the step motor. The solenoid coil is demenergized when the interruptor switch contacts open, and the plunger is forced back to its original position by a spiral spring. The wafer shaft, however, remains at the position to which it has been driven. If no other control were present under the conditions so far stated, the 150 VDC connection to the solenoid coil would be made and broken in sequence and the wafer shaft would rotate continuously in 30° steps. It will be shown presently that the 150 VDC connection to the solenoid coil may be made or broken by two other elements in the RFO Control System.
(b) Reference Figure 2-13:- In this illustration, it will be observed that only those elements within the boxed area are integral portions of the step switch. The con= trol of the step switch by three different switching operations is shown in schematic form. One switching operation is that of the interruptor switch which was previously explained. The second switching operation is that of the motor actuated switch. In this case the switch is that shown in Figure $2-48$, and performs two functions - to minimize the danger of solenoid coil failure due to a jammed ratchet and to rem duce the size of the 150 VDC supply by connecting only seven step switches to its positive terminal at any one time. The third switching operation is the one of most importance in the actual selection of a desired frequency. In

Lesson Sheet No. 4
Page 3.
this case, a control wafer with a knob to determine its contact position (basically, this could be any type of switch) is connected by wire lines to contacts on the homing wafer of the step motor. It will be observed that the step motor will stop whenever the wire connections between the control and homing wafers no Ionger provide a positive 150 VDC comnection to one side of the solenoid coil -i.e., the notch on the homing wafer moves opposite the contact connected by a wire line to the engaged contacts of the control wafer. The illustrated Control System that uses one wire for each position is called the 12-wire system. It is possible to obtain 12position control with four wires between control and homing wafers by the use of specially cut notches on both wafers. In the 12-wire system it is possible to obtain any fixed relationship between the positions of the control and homing wafers by appropriate wiring. With the 4 wire system, however, the number of relationships between the control wafer and homing wafer are limited。
(c) 12-wire and 4-wire Control Systems:- (see pages 2-78 through 2-80 and Figures 2-49 through 2-52). The two types of control systems are used in the RFO due to the necessity in the one case -- 12 -wire system $-\infty$ for the homing wafer in certain cases to home to a position not corresponding to the same position on the control wafer, and in the second case - 4 -wire system $-\infty$ for a reduction in inter-unit wiring. As an example of 12 -wire control, if position 9 on the homing wafer were wired to position 3 on the control wafer for the step motor, the step motor would home to position 9 each time the contacts of position 3 were engaged. It follows that a very large number of combinations of positions are possible with the 12 -wire system. However, in the case of the 4 -wire system, the number of combinations of control and homing wafer positions are strictly limited. Twelve positions are obtained with the 4 -wire system through the use of specially cut notches on the control and homing wafers.
3. Motor B-2916 (see Figure 2-53):- The operation of motor B-2916 has been referred to in $1(b)$ above; however, a closer examination is warranted. This motor drives the

Lesson Sheet No. 4
Page 4.
commutator switch of Figure 2-48. From experience it has been determined that the teeth on the step switch ratchet may jam under certain circumstances. The operation of the commutator switch on motor B-2916 is to switch the positive 150 VDC lead in and out of the step motor control circuit at a 12 cps rate. The 12 cps rate is maintained constant by the governor on motor B-2916; and it is obvious that 1 cycle is applied for every 30° of wafer shaft rotation. This feature, coupled with the operation of the interruptor switch, insures that in the event of the ratchet teeth becoming jammed, the solenoid coil will not be burned out. In addition, the commutator switch is used to reduce the size of the 150 VDC supply since it connects only 7 of the 14 step motors to the supply at any one time.
4. 150 VDC Supply: - The instructor will refer the student to Figure 2-46 and pages 2-74 and 2-75. In explaining this subject, the instructor will stress the operation of relay $\mathrm{K}-2917$, which performs important functions in both CHANNEL and MANUAL operation of the RFO.
5. Other Major Items in the RFO Control System:-

The instructor will refer the student to paragraphs (2), (3) and (4), pages $2-75$ through $2-77$, and to Figures $2-47$ and 2-53.
6. RFO Control Circuits =- General:- The instructor will explain the material covered on pages 2-71 through 2-73.
7. Automatic Operation of the RFO:- The instructor will explain automatic operation in accordance with paragraph (7), pages 2-80 through 2-86 and Figure 2-53. It will be observed that all the functions that are performed in MANUAL, except for turning decade knobs and opening and closing of transparent door covering them, must also be performed in automatic operation. In addition, it is necessary to be able to dial any one of 10 pre-set channels. The additional components necessary are:
(a) A set-up panel consisting of 70 miniature, ten position switches. For each of the ten channels there are seven switches; and for each of the seven digits of the output frequency, there is a bank of 10 switches - one switch for each

Lesson Sheet No. 4
Page 5.
channel. The corresponding points on each switch of the bank of 10 switches are connected together. These leads are then connected to the appropriate contacts on the homing wafer of the step-motor that controls the corresponding digit of the output frequency.
(b) Seven step-motors for controlling the position of each of the knobs on the front panel.
(c) The channel distributor switch S-2986, which consists of a step-motor and seven wafers. This switch connects power to the arms of the seven set-up switches corresponding to the channel dialed. Each wafer is connected to 10 set-up switches. The position of a wafer determines which set-up switch of a group of 10 receives power.
(d) Two control relays, $K-2916$ and $K-2918$, which cause channel selector relay K-2995 to come to rest in the position corresponding to the channel dialed.
(e) A DPST CHANNEL-MANUAL switch which applies power to the channel voltage divider and the channel distributor switch wafers when in channel position. In manual position this power is removed and therefore the channel selector relay and the channel distributor switch will not be capable of operating. In addition, the two control rem lays can not be energized.
8. Operation of Step Switches During Automatic Operation:-

The instructor will cover the material of pages $2-86$ through 2-98 and Figures 2 255 through 2-62 in the briefest possible manner conducive to the student understanding how to find the position of each of the 14 step switches for a desired frequency. In this connection, it is suggested that Figure $2-63$ be used as an example and that the students work with the instructor in establishing the position of all 14 step switches for this frequency. Tables $2-1$ through $2-14$, less Table $2-3$, will be found helpful in this problem. Table $2-22$ should also be studied.

Lesson Sheet No, 4

Page 6.

9. Operation of Step Switches During Manual Operation: -

It is intended that the instructor use this subject as a test of the student's comprehension of the RFO Control System. The subject of MANUAL operation is covered in paragraph (b) at the top of page $2-108$, and on pages 2-99 through 2-101. To assist the student, it should be pointed out that only certain step switches are electrically controlled in MANUAL operation. These are $S-2426, S-2526, S-2651, S-2427$, $\mathrm{S}-2652$, and $\mathrm{S}-2996$. In addition it should be observed that $\mathrm{S}-2801$ and $\mathrm{S}-2802$ in Unit 11C are mechanically connected to $S-2651$ and $S-2652$, respectively, in Unit 11B. It is suggested that the instructor use any remaining time in this period in having the student write out the switch positions for a test frequency.

CONCLUSION: It should now be apparent that the apparent complexity of the RFO evolves from the multiplicity of control operations. However, when the student reduces the circuitry to its basic groupings, the repeated usage of the same simple circuits is observed.

Time Allotted: - 4 Hours

SUBJECT: Introduction to the Low Level Radio Modulator
 OBJECTIVE: To introduce the basic concepts of Radic Modulator MD-143/URT.

INTRODUCTION:
Basically, the LLRM consists of seven major circuits together with a number of minor circuits wherein a large percentage of the control functions of the AN/URT-2, -3 , and -4 Radio Transmitting Sets are initiated or channeled. Most of the circuits are conventional and will be passed over quickly; however, the keying circuits and the 250 VDC regulated power supply are unconventional and should be studied carefully.

SUBJECT MATERIAL:

CONCLUSION: The apparent complexity of the LLRM should by now be re-
I. Display Figure 2-64.
2. Refer the student to pages 2-108 through 2-159 for a complete theoretical explanation of the operation of the LLRM.
3. Explain the operation of the LLRM on the basis of the material in pages $2-108$ down to the middle of page 2-112 with brief extensions of this material by excerpts from pages $2-112$ through $2-159$. Figures $2-65$ through $2-95$ may be referred to as required.
4. The Instruction Book material starting with paragraph f on page $2-124$ and continuing to paragraph g on page $2-141$ should be explained in detail. In addition, the material starting with paragraph h on page $2-148$ and continuing to paragraph i on page 2∞ 151 should be covered extensively.
5. The LLRM control circuits (see para. g, pages 2-141 to the middle of page $2-148$) should be explained only to the extent necessary so that the student may lom calize trouble due to malfunction in these circuits. No particular difficulty may be expected in correct... ing troubles due to such malfunction since, in most cases, the corrective measure will be obvious. duced to simple circuitry with which the student has had previous experience.

QUESTIONS AND/OR
ORAL QUIZ:

Time permitting, student questions will be answered, and/ or an oral quiz may be given.

Time Allotted: - 2 Hours

SUBJECT: Low Level Radio Modulator Identification (LLRM)
OBJECTIVE: To identify Radio Modulator MD-I43/URT (LLRM), locate components and establish a basic check list of voltages and/or resistances at test points.

EQUIPMENTT REGUIRED:

PROCEDURE:

CONCLUSION: After all work is completed and sketches and/or lists

1. One or more LLRM(s) properly installed in AN/URT-() Radio Transmitting Set(s).
2. One or more test cables for use with l, above。
3. One or more $\mathrm{ME}-25 \mathrm{~A} / \mathrm{U} \operatorname{VTVM}(s)$ and/or $\mathrm{ME}-48 \mathrm{~A} \operatorname{VOM}(s)$, or equivalents.
4. At the request of the instructor, students will remove LLRM from the bay and place on a suitable support.
5. Students will determine the location of all major circuits and of major components within those circuits and will sketch and label both top and bottom views of the chassis by reference to the schematic in the Instruction Book。
6. Reference should be made to the proper Lesson Sheet for an outline of the more important circuits. Should any difficulty be met in determining the location of these circuits, the instructor should be asked to point out the limits of the circuit.
7. Students will connect LLRM to bay by means of a test cable and will check voltages at various test points.
(Note: - DANGER - HIGH VOLTAGE sign must be displayed and all necessary safety precautions taken). have been checked by the instructor, students will replace and secure all drawers, panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

Time Allotted: - 1 Hour

SUBJECT:	Introduction to the High Level Radio Modulator
OBJECTIVE:	To introduce the basic concepts of Radio Modulator MD-149/URT.
INTRODUCTION:	This is the first unit introduced so far in this course which is directly connected with 500-watt operation of the AN/URT-2, -3 , and -4 Radio Transmitting Sets. It is a part of the Booster (HVPS and HLRM) and will only be required when it is desired to operate at the 500 -watt level.
SUBJECT MATERIAL:	1. Refer the student to pages 2-160 through 2-171 and Figures 2-96 through 2-99.
	2. The instructor will explain the circuitry in detail with particular emphasis on the 21 used sections of Switch S-1601. Switch S-1601 plays a very important part in the Transmitter Group Control circuits.
CONCLUSION:	The HLRM is a standard audio amplifier operating in class $A B_{2}$ with drive supplied from the LLRM.
QUESTIONS AND/OR ORAL QUIZ:	Time permitting, student questions will be allowed, and/ or an oral quiz may be given.

Tine Allotted: - 1 Hour

SUBJECT:
OBJECTIVE:
EQUIPMENT
REQUIRED:

PROCEDURE:

High Level Radio Modulator Identification
To identify Radio Modulator MD-149/URT (HLRM), and locate components.

1. One or more $H L R M(s)$ properly installed in AN/URT-() Radio Transmitting Set.
2. One or more test cables for use with $l_{\text {, }}$ above.
3. One or more $\operatorname{ME}-25 \mathrm{~A} / \mathrm{U} \operatorname{VTVM}(s)$ and/or $\mathrm{ME}-48 \mathrm{~A} \operatorname{VOM}(s)$, or equivalents.
4. Students will remove HLRM from transmitter bay.
5. Using Figures $2-96$ and $2 \mathbf{9 9}$, the student will trace the following on the equipment to a plug or jack termination and label the figures in the Instruction Book:-
(a) Audio from LLRM (both leads).
(b) -50 Volts Bias
(c) $\$ 2400 \mathrm{~V}$ (Phone) or $\$ 3000 \mathrm{~V}(\mathrm{CW}, \mathrm{FSK}, \mathrm{FAX})$ to $\mathrm{K}-1605(6)$.
(Note:- Assume K-1603 energized and K-1605 energized, all other circuits in proper operation and $S=1602$ in position 1 , What are the power levels and possible methods of operation for right and left transmitters in the case of the AN/URT-4?)
(d) $\$ 2400 \mathrm{~V}$ (Phone) or $\$ 3000 \mathrm{~V}$ (CW, FSK, FAX) from HVPS.
6. Using Figure $2-97$, locate E-1603 in the equipment and observe the operation of link modification for 220 V to 440 V operation. One student will be selected by the instructor to perform this operation.
7. Using Figure 2-98, the student will compile a list of the connections for decks A through X for position 1 of $\mathrm{S}-1601$; e.go, Plug P-1601 (1) to $\mathrm{S}-1601$ (A-1) to V-1601 Control Grid. Two students at a time will be selected by the instructor to check the list being prepared by ohmeter measurements.
8. Find $S-1604$ and $S-1605$ and make list similar to 4 , above, for all positions of each switch. List the purpose of the two switches.

Shop Exercise No. 5
Page 2.
6. Study the components involved and state the purpose of $\mathrm{C}-1603, \mathrm{C}-1604$, and $\mathrm{R}-1607$ through $\mathrm{R}-1610$.

CONCLUSION: After all work is completed and sketches and/or lists have been checked by the instructor, students will replace and secure all drawers, panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

LESSON SHEET NO. 7

Time Allotted: - 2 Hours

SUBJECT: Introduction to the Radio Frequency Amplifier
OBJECTIVE: To analyze the operation and certain control features of Radio Frequency Amplifier AM-519/URT.

INTRODUCTION: The Radio Frequency Amplifier is a combination of several units which are utilized in providing 100 or 500 watts output and in supplying control signals as required for the proper operation of the AN/URT-() Radio Transmitting Set.

SUBJECT
MATERIAL:

CONCLUSION: The RFA differs from previous equipments known to the student only in respect to the automatic tuning features.

QUESTIONS: Student questions will be permitted.

Time Allotted: - 2 Hours

SUBJECT:
OBJECTIVE:

EQUIPMENT
REQUIRED:

PROCEDURE:

Radio Frequency Amplifier Identification
To familiarize the student with the operation of Radio Frequency Amplifier AM-519/URT, the location of its five basic sections, the location of certain component parts and their function in the circuit.

1. One or more Radio Frequency Amplifier(s) AM-519/URT.
2. One or more test cables for same.
I. Students will remove Radio Frequency Amplifier from transmitter bay.
3. Using Figure 7-144 as a guide, the instructor will point out the five major sections:
(a) RF Amplifier Exciter Assembly
(b) Keying Unit Assembly
(c) Servo Amplifier Assembly (IPA and PA)
(d) PA Sense Rectifier Unit
(e) Primary IPA and PA circuits
4. Connect Radio Frequency Amplifier to bay by means of test cable and energize equipment. Using Figure 2-100 as a guide, students will set up the RFO for one frequency in each RFA band and observe the following during automatic and semi-automatic operation:
(a) Operation of Bandswitch Motor (see Figure 2-109)
(b) Buffer-IPA Tuning (see Figure 2-114).
(c) PA Tuning (see Figure 2-118)。
5. Based upon 3, above, list the relay number and function performed by relay actuated by each of S-1351, S-1353, S-1355, and S-1357. Also state dial reading for IPA and PA Dial when switches close.
6. With equipment operating as an AN/URT - 2, list the following indications as observed on Test Meter M-1301:

M-1301
Position
IPA

RFO Out
E_{b}

RESTRICTED
MRT-20

Shop Exercise No. 6
Page 2.

6. After completion of 5 , above, and all power is turned off, each student will sketch the front panel and show by arrows the schematic symbol for each meter, switch, and indicator lamp. The student will then prepare a list of the symbols and the functions of the components designated.

CONCLUSION: After all work is completed and sketches and/or lists have been checked by the instructor, students will replace and secure all drawers, panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

LESSON SHEET NO. 8

Time Allotted: - 1 Hour

SUBJECT:	Introduction to Power Supplies and Base Mount
OBJECTIVE:	To indicate the functions and basic controls in the LVPS, MVPS, HVPS, and the Base Mount.
INTRODUCTION:	With the exception of the Dumping Circuit in the MVPS, all of the circuits in the four units are conventional. It is desired that the student understand the operation of the respective units as covered by the simplified schematics and that particular emphasis be given to the control circuits.
SUBJECT MATERIAL:	1. Refer the student to Figures 2-124 through 2-142 which will be used in the discussion. 2. On the basis of the material in pages $2-230$ through 2-254, the instructor will give a brief description of each circuit shown.
CONCLUSION:	Refer the student to pages 2-230 through 2-254 for a complete explanation of any circuit which may be new to him.

Time Allotted: - 3 Hours

SUBJECT:	Control Circuits in Power Supplies and Base Mount
OBJECTIVE:	To familiarize the student with the Power Supplies and
	Base Mount, with particular reference to control circuits.
EQUIPMENT REQUIRED:	1. One operating AN/URT-3 or AN/URT-4 Radio Transmitting Set.
	2. One set of test cables.
	3. One $M E-48 \mathrm{~A}$ VOM, or equivalent.
PROCEDURE:	(Note:- During this exercise the student will be in close proximity to voltages dangerous to life. Extreme caution must be exercised).
	1. LVPS, MVPS, and HVPS drawers will be removed from Transmitter Bay by students when directed by the instructor.
	2. Terminal board will be unscrewed and raised to enable access to base mount.
	3. The location of blowers, heaters, and air filters will be observed.
	4. Base mount will be reassembled and MVPS and HVPS replaced in Transmitter Bay.
	5. With the LVFS on a test cable, energize the transmitter and complete Table $7-34 \mathrm{~W}-1$.
	6. Replace LVPS in Transmitter Bay, remove MVPS on test cable as in 5, above, and complete Table 7-34W-2.
	7. Replace MVPS in Transmitter, remove HVPS on test cable as in 5, above, and complete Table $7-34 W-3$.
	8. Two students will be assigned by the instructor to demonstrate link changes in the LVPS and HVPS for power sources of different voltage and/or frequency.
	9. Using Figure 7-145, list the LVPS operating voltages as measured at the following points:-

Point Measured	Voltage
V-3001, Pins 2 and 8	
V-3001, Pin 4 to ground	

Shop Exercise No 7
Page 2.
Point Measured
V-3001, Pin 6 to ground
J-3001 to ground
V-3002, Fins 2 and 8
V-3002, Pin 4 to ground
$\mathrm{V}-3002$, Fin 6 to ground
High side of $\mathrm{R}-3009$ to ground
$\mathrm{V}-3003$, Pins 2 and 8
$\mathrm{~V}-3003$, Pin 4 to ground .
$\mathrm{V}-3003$, Pin 6 to ground
$\mathrm{J}-3002$ to ground
P-3002 (9) to ground
P-3003 (8) to ground
10. Using Figure 7-146, list the MVPS operating voltages as measured at the following points: -

Point Measured
Voltage
V-.501, Cap to ground
\qquad

V-501, Pins 1 and 4
V-502. Cap to ground
$V-502$, Pins 1 and 4

(V-503, Cap to ground

(V-503. Pins 1 and 4

100W
only (V.a 504 , Cap to ground
(V-504, Pins 1 and 4
$V-505$: Pins 1 and 5
$\mathrm{V}-505$, Pin 2 to ground

Shop Exercise No, 7
Page 3.

Point Measured
Voltage
V-505, Pin 3 to ground
V-505, Pin 4 to ground
V-505, Cap to ground
V-506, Pins 1 and 5
V-506, Pin 2 to ground
V-506, Pin 3 to ground
V-506, Pin 4 to ground
V-506, Cap to ground
11. List meter type and serial number with which measurements of 9 and 10, above, were made.

Meter Type \qquad
Serial No. \qquad
CONCLUSION: At end of shop exercise, when all work is completed, students will replace all covers, return and secure all drawers to Transmitter Bay, and turn in all tools and/or t.est equipment.

LVPS Relay	Operated By	Function
$\mathrm{K}-3009$		

Table 7－34W－2：－MVPS Relay Controls

MVPS Relay	Operated By
K－501	Function
$K-502$	

\qquad
Table 7－34W－1：- LVPS Relay Controls cont id．

\qquad
\qquad

Time Allotted: - 4 Hours

SUBJECT: Analysis of Transmitter Group Control Circuits
OBJECTIVE: To analyze the control circuits used in the Transmitter Group of the AN/URT-2, -3 , and -4 Radio Transmitting Sets.

INTRODUCTION: It is assumed that the student is now aware of the individual drawer circuitry within the Transmitter Bay Transmitter Group plus Base Mount. This lesson provides the student with information for tying together the drawer controls into a system of controls.

SUBJECT
MATERIAL:
I. The instructor will refer the student to Figure $2=$ 143 and explain the sequence of operation for:
(a) Condition 1 ,
(b) Condition 2, and
(c) Condition 3 .
(See page 2-258 to top of page 2-260).
2. Referring to Figures 2-144 and 2-145, the instructor will explain 1, above, in greater detail. (See page $2-260$ through the middle of page $2-264$).
3. The instructor will display "Transmitter Bay Control Circuits, Simplified Schematic," Figure 7-152, and will explain:
(a) Fower for the Control Circuits (see pages 2-264 through 2-267).
(b) Automatic Operation (see pages 2-273 through 2284).
(c) Semi-Automatic Operation (see pages 2-285a through 2-288).
(d) Manual Operation (see pages 2-289 and 2-290).
(e) Auxiliary Control Circuits (see pages 2-291 through 2-295)。
(Note:- It may be found that, in the explanation of the power circuits within the Transmitter Bay, Figure $3-54$ may be of assistance for an overall grasp of the problem, in addition to Figure 7-152, specified above).

Lesson Sheet No. 9
Page 2.

CONCLUSION: The AN/URT-2, -3 , and -4 series of transmitters is composed of units which employ mainly conventional circuitry, the operation of which is not difficult to understand. The automatic tuning feature of the IPA, PA and ATE is not normally employed in other transmitting systems. It is, therefore, recommended that the student try to visualize what happens at each step of the tuning cycle in each of these three stages.

QUESTIONS
Questions will be allowed if time permits, and an oral quiz may be given.

Time Allotted: -2 Hours

SUBJECT: Transmitter Group Operation and Control Circuit Check
OBJECTIVE: To identify the major control circuits within the AN/URT - () Radio Transmitting Set.

EQU IPMENT
REGUIRED:

FROCEDURE: 1. Students will be assigned to transmitting set(s).
2. With controls set for automatic operation, student will list sequence of operation and front panel indications, starting from "Main Power Switch On."
3. Student will repeat 2 with controls set for semiom automatic operation.
4. Student will repeat 2 with controls set for manual operation.

NOTE: - The student may desire to do steps 2, 3, and 4 in reverse order and to remove various chassis for operation on a test cable. Such deviaw tion from this procedure should be permitted at the discretion of the shop instructor.

INSTRUCTIONS:
After completion of 4 , above, student will refer to "Transmitter Bay Control Circuits, Simplified Schematic," Figure $7-152$, and trace the path of electron flow for each front panel indication. Mark schematic with pencil or colored pencils, if available.

CONCLUSION: After all work is completed and sketches and lists have been checked by the instructor, students will replace and secure all drawers, panels and/or covers, turn in all tools and/or test instruments, and clear working space for the next shop exercise.

Time Allotted：－ 2 Hours

SUBJECT：Introduction to the Antenna Tuning Equipment
OBJECTIVE：To introduce the Antenna Tuning Equipment．
INTRODUCTION：The Antenna Tuning Equipment is made up of Radio Frem quency Tuner TN－197／URT，Antenna Control Group OA－297／URT， and Capacitor Assembly $\mathrm{CB}=5 / \mathrm{URT}$ ．The Radio Frequency Tuner TN－197／URT serves as a transmission line which is automatically or manually tuned to a condition of optimum match between the AN／URT－（ ）Radio Transmitter and any antenna ranging from a 35 －foot whip（Navy type $\mathrm{C}-66047$ ） to an inverted＂L＂ 100 to 175 feet in length including a 40－foot downolead．The tuner operates over the entire range of 0.3 to 26 mcs ．

The Antenna Control Group consists of a Control Indicator C $=915 / \mathrm{URT}_{9}$ a Power Supply PP－708／URT， 2 Pre－amplifiers－ Electronic Control Amplifier AM－556／URT， 2 Electronic Control Amplifiers AM－555／URT，and the Cabinet CY－1047／ URT．This equipment is required as a connecting link in the automatic tuning sequence for the antenna system． The Capacitor Assembly CB－5／URT provides a series or parallel capacitor for use in the antenna circuit when required。

SUBJECT MATERIAL：

1．Display＂Antenna Tuning Equipment，Functional Block Diagram，${ }^{8}$ Figure 2 2 ．Give a general description of the ATE．（See paragraph 2，pages 2－2 through $2-5$ of ＂Section 2，Theory of Operation for Antenna Tuning Equipment．${ }^{88}$ ）

2．The instructor will refer the student to Figure 7－27 in Section 7，＂Corrective Maintenance for Antenna Tuning Equipment，＂and will indicate the location and briefly describe the function of the various cir－ cuits shown during the following operations：
（a）Normal scan
（b）Antenna too short）Capacitor Assembly
（c）Antenna too long）Operation
（d）＂Mismatch＂
（1）Normal operation
（2）Energency manual operation
（See paragraph 6，pages 2044 through $2=51$ ，in＂Theory of Operation for Antenna Tuning Equipment，＂Section 2 of the Instruction Book）。

Lesson Sheet No, 10
Page 2.
3. Referring to the same illustration, the instructor will discuss briefly the following operations, and will utilize Figure 7-14 in the Antenna Tuning Equipm ment section of Section 7 to illustrate the functional operation involved:
(a) Limit switch
(b) Drive mechanism
(1) Gear train
(2) Differential
(3) Motors
(4) "Helipot"
(5) Chain drive
(6) Guards
(7) Shielding

CONCLUSION: It should be obvious by now that the Antenna Control Group and the Radio Frequency Tuner, together with the Capacitor Assembly, comprise a system for the matching of the output of the $\mathbb{A N} / \mathrm{URT}-$ () Radio Transmitting Set to various antennas over an extremely wide range of free quencies. Since these items are parts of a system, it is of the utmost importance that the student understand both the individual units and the interrelation of these units in the performance of the overall system functions.

QUESTIONS: Student questions will be permitted provided they are directly related to the Antenna Control Group, the Radio Frequency Tuner, or the Capacitor Assembly.

Time Allotted：-4 Hours

SUBJECT：	Analysis of Antenna Tuning Equipment Control
OBJECTIVE：	To analyze the ATE Control Circuits as an extension of Lesson Sheet No．10。
INTRODUCTION：	All of the ATE controls have been designed with a rem quirement for the exchange of 24 VDC On－Off signals be－ tween the Transmitter Group and the ATE so that automatic tuning may proceed in an orderly manner．It is the pure pose of this lecture to acquaint the student with the operation of the ATE control circuits following or pre－ ceding each signal，and the design features of subsidiary amplifiers，power supplies，and special circuitry inm volved in such control operation．

SUBJECT
MATERIAL：

CONCLUSION：
（Note：－Instruction Book explanatory material for this lesson is found on pages $2-5$ through the middle of page $2-44$ ．However，the lecture found on the pages of this notebook directly following this lesson sheet has been found to satisfy most course requirements）．

1．Display Figure 7－27，＂Antenna Tuning Equipment， Schematic Diagram，＂and explain the following：
（a）Major Units in ATE（Appendix＂A＂of lecture）．
（b）ATE Relays and Switches（Appendix＂B＂of lecture）．
（c） 24 VDC Supply（Paragraph 4 of lecture）．
（d）＂Transmitter－On＂Signal（Paragraph 5 of lecture）．
（e）＂Ready－tomTune＂Signal（Paragraph 6 of lecture）。
（f）＂Reset Signal＂（Paragraph 7 of lecture）．
（g）＂Interrogate＂Signal（Paragraph 8 of lecture）。
（h）Servo Amplifiers（Paragraph 9 of lecture）．
（i）Conditions for a Tuning Scan（Paragraph 10 of lecture）。
（j）Conditions for a＂Tuned＂Signal（Paragraph 11 of lecture）．
（k）Servo Motor and Limit Switch Circuits（Param graph 12 of lecture）．
（1）＂Tuned＂Signal（Paragraph 13 of lecture）．
（m）Capacitor Assembly Operation（Paragraph 14 of lecture）．
（n）＂Mismatch＂Signal（Paragraph 15 of lecture）．
（o）Manual Tuning Process（Paragraph 16 of lecture）．
It will be observed by the student that，although the Anteña Tuning Equipment Control Circuits appear quite complex at first glance，the individual circuits in－ volved are basically those circuits with which the electronics technician has had considerable previous

Lesson Sheet No. 11

Page 2.
experience. One difficulty which has been met in previous courses is that more than one operation is being carried on at the same time. However, once the student understands the control operations for each of the individual circuits, the factor of multiple operation at any given instant should introduce no great difficulty in total comprehension of the Antenna Tuning Equipment and its control circuits.

QUESTIONS: Questions by the students will be permitted; however, the lecturer will reserve the right to pass over questions involving long theoretical explanations.

ANALYSIS OF ATE CONTROL CIRCUITS

Suggested Lecture for use with Lesson Sheet No. 11

[^0]
TABLEOFCONTENTS

Paragraph Page
1 INTRODUCTION 1
2 FIGURE 7-152 OF THE INSTRUCTION BOOK 1
3 AFPENDIX "B" 1
424 VDC SUPPLY. 1
5
"TRANSMITTER-ON" SIGNAL. 3
6 "READY-TO-TUNE" SIGNAL 3
7
"RESET" SIGNAL 4
8 "INTERROGATE" SIGNAL 6
9 SERVO AMPLIFIERS 6
(a) Servo Pre-Amplifier 8
(b) Servo Power Amplifier 9
10 CONDITIONS FOR A TUNING SCAN 10
11 CONDITIONS FOR A "TUNED" SIGNAL。 11
12 SERVO MOTOR AND LIMIT SWITCH CIRCUITS. 11
(a) "T" Servo Motor and Limit Switch Circuit. 12
(b) "C" Servo Motor and Limit Switch Circuit 14
13 "TUNED" SIGNAL 15
14 CAPACITOR ASSEMBLY OPERATION 16
15 "MISMATCH" SIGNAL。 17
16 MANUAL TUNING PROCESS. 17
APPENDICES
APPENDIX "A" - List of Major Units in ATE APPENDIX "B" - List of ATE Relays and Switches

LISTOFILLUSTRATIONS

Figure	Title
1	Terminal Connections for Cable R-RT5
2	24 VDC Supply in ATE
3	Terminal Connections for Cable R-RT6
4	Terminal Connections for Cable R-RT7
5	Terminal Connections for Cable R-RT8

I. INTRODUCTION

It is the purpose of this paper to present the ATE (Antenna Tuning Equipment, see Appendix "A") control circuits in the simplest possible manner. It is believed that a combination of simplified schematics and explanatory appendices will accomplish this purpose.

2. FIGURE 7-152 OF THE TNSTRUCTION BOOK

For the purpose of the presentation to be made, it is assumed that the reader is familiar with "Control Circuits Schematic Diagram, AN/URT-3 Transmitter Bays" Figure 7-152 of the Instruction Book. In connection with this drawing, it will be observed that certain signals $-\infty 24$ VDC On Off are exchanged between the transmitter bay and the ATE. The signals exchanged are listed, and the terminal unit wiring is shown in Figure 1. Arrows are used to indicate the direction of electron flow. It will be observed that the six signals are "Transmitter-On" "Mis match", "Interrogate", "Ready-tomTune", "Tuned", and "Reset"。 In addition, the RF power is transmitted over a coaxial cable running between the transmitter bay and $J-435$ on the RF Tuner.
3. APPENDIX ${ }^{\prime \prime} B^{\prime \prime}$

In this discussion, the primary interest will be in the operation of switches and relays in the various sections of the ATE (see Appendix "A")。For this reason, all the switches and relays located in the ATE have been listed in Appendix "B" according to their physical location and function.

4. 24 VDC SUPPLY

All of the 24 VDC signals, with the exception of the "TransmitterOn" signal, are positive and are obtained through the circuits connecting to the 24 VDC Supply in the Antenna Control Group Control-Indicator RESTRIGTED MRT-39
(ACG C-I). The "Transmitter-On" signal is a negative 24 VDC obtained from the relay or control supply in the transmitter bay Low Voltage Power Supply (LVFS). The C-I 24 VDC supply is show in simplified form in Figure 2.

The independent 110 VAC line to the ACG enters the ACG cabinet through terminals A and B of P-1902. C of P-1902 is grounded. The 110 VAC proceeds through ACG Cabinet wires 2 and 1 to terminals K and F_{s} respectively, on $J-1910 / \mathrm{P}-210$. From these terminals, the 110 VAC is switched on through S-202, "Emergency" switch, passes through line fuses F -201 and $F-202$, and lights lamp I-201 on the front of the ACG Power Supply (ACG PS). From this point, one side of the 110 VAC line proceeds through terminal P of P-201/J-1910, ACG Cabinet wire number 46, ACG Main Terminal Board (ACG MTB) terminal 1, wire 44, terminal L of Jwl905/ $\mathrm{P}=302$ to terminal 2 of $\mathrm{T}-301$ in the ACG C-I. From the other side of the 110 VAC line, one can similarly follow the path through either the "Local" position of "Local-Remote" switch, S-201, or the contacts of K-202, "Transmitter-On" relay, when energized. From this point, the second side of the 110 VAC line proceeds to terminal J on $\mathrm{P}-201 / \mathrm{J}-1910$, along wire 49 to ACG MTB terminal 3, then along wire 48 to terminal N of J-1905/P-302, and finally reaches terminal 1 of T-301 in the ACG $C-I$ 。 It follows that the 24 VDC control source in the ATE is available any time the "Local-Remote" switch, S-201, is in the "Local" position or any time the "Transmitter-On" relay, K-202, is energized, assuming S-202, "Emergency", is closed.

5. "TRANSMITTER-ON" SIGNAL (1st SIGNAL)

The first signal exchanged between the transmitter bay and the ATE is the "Transmitter-On" signal (see Figure 1)。 This is a negative 24 VDC which enters terminal A of P-1901 on the ACG from line 133. Then, as we follow along wire 4 in the ACG Cabinet wiring, the signal enters the ACG PS through terminal N of J-1910/P-201. The negative 24 VDC goes to ground through the coil of the "Transmitter-On" relay and lamp, K-202 and I-202, respectively, K-202 being energized closes the open side of the line to the C-I 24 VDC supply (see Figure 2)。
6. "READY-TO-TUNE" SIGNAL (2nd SIGNAL)

When the 24 VDC supply in the ACG C-I wes energized, (see Figure 2), relay $K-321$, Blower relay, was energized closing contacts $3 R-2 R$. The output of the 24 -volt rectifier, $C R-301$, is connected to terminal 3R of K-321; therefore, the 24 VDC now may be traced through terminal V of P-303/J-1908, wire 18 in the ACG Cabinet, terminal K of J-1901/--/ P-435, to one side of S -439 , the thermostat in the RF Tuner. Since S-439 is normally closed, the 24 VDC returns to the ACG through terminal F of $\mathrm{P}-435 /-\mathrm{J} / \mathrm{J}-1901$, then passes along wire 23 to terminal D on $\mathrm{J}-1910 /$ P-201, where the 24 VDC goes to one side of K-201, (20wsecond TD), and through the field coil of K-201 to ground. After 20 seconds, $K-201$ is energized providing the 24 VDC "Ready-tomTune" signal to the transmitter bay through terminal C on P-201/J-1910, ACG Cabinet wire 79, ACG MTB terminal 22, ACG Cabinet wire 8 , terminal E of P-1901 on the ACG and then through wire 61 to terminal 73 on TB E-606 in the transmitter bay.

When $K-201$ is energized, 24 VDC is also supplied to one side of S-201, "LocalmRemote" switch. In the "Local" position, S-201 supplies
the 24 VDC to terminal H on P-201/J-1910, ACG Cabinet terminals 19 and 18 to ACG Cabinet wires 72, 73, and 74。 the 24 VDC to terminal N on $J-1909 / \mathrm{P}-151$ and then to the "Hi" side o. the coil on K-151, Disable relay in the ACG "T" Servo PA. Wire 73 feeds the 24 VDC to terminal N on $J=1911 / P-151$ and then to the "Hi ${ }^{8 \prime}$ side of the coil on K-151, Disable relay in the ACG "C" Servo PA. Wire 74 feeds the 24 VDC to terminal W on $J-1907 / P-301$ and then to the "Hi" side of the coil on $\mathrm{K}=304$, Local relay in the $\mathrm{ACG} \mathrm{C}=\mathrm{I}$. The coils of $\mathrm{K}-151$ and K-304 have one side grounded and are energized under this condition. 7. "RESET" SIGNAL (3rd SIGNAL)

The "Reset" signal cannot be sent to the ATE until such time as the "Ready - to Tune" signal has been received in the transmitter bay. Once the "Ready-to-Tune signal is available in the transmitter and on any occasion during which the IPA stage of the RFA is caused to retune, the "Reset" signal will be sent out to the ATE. The 24 VDC from the "Readyto $\mathrm{Tune}^{\prime \prime}$ signal is connected to terminal 72 on TB Em606 when contacts 7L-8L close and continues for such period as "Call for IPA Tune" relay K-1360 is energized. The 24 VDC leaves the transmitter bay on wire 136 and enters the ACG (see Figure 1) on terminal H of Pm1901. ACG Cabinet wire 10 connects the 24 WDC to ACG MIB terminal 9 from which wires 58 and 38 transmit the signal to terminal C on $\mathrm{J}=1907 / \mathrm{P}-301$ (ACG C-I) and to terminal B on J $\quad 1903$ (ACG Cabinet), respectively, From terminal C on $\mathrm{P}-301$, the 24 VDC signal energizes Reset relay, $\mathrm{K}-301$, and is connected to terminal 3 R on $\mathrm{K}-301$ and to one side of $\mathrm{S}-306$, the Reset momentary contact switch, in the ACG C-I. When K-301 contacts $3 \mathrm{R}-2 \mathrm{R}$ close, TBLR
relay K-308 is energized. Plate Supply relay $\mathrm{K}-203$ is also energized through $K-301$ contacts $2 \mathrm{~L}-3 \mathrm{~L}$ which feed a 24 VDC signal through terminal E on P-303/J-1908, ACG Cabinet wire 96, and through terminal S on J-1910/P-201 to the "Hi" side of the coil on K-203. The Reset relay, $K-301$, has broken all previous circuit connections for any previous status of tuning when $K-308$ was energized, and through $K-308$ acts to move "T" to the top of the main coil in the RF Tuner. When relay K-301 is energized, a phase shifted 110 VAC source is connected through con tacts $1 R-2 R$ to the variable phase of the "T" Servo Motor, B-435. The "T" Servo Clutch, $\mathrm{L}=435$, is now connected directly to the 24 VDC line from terminal J on P-301, TBLR relay $K-308$ contacts $4 \mathrm{~L}-5 \mathrm{~L}$, and TTLR relay $\mathrm{K}-307$ contacts $6 \mathrm{~L}-5 \mathrm{~L}$ (see Figure 2-10 in the Instruction Book)。 The 110 VAC is so connected as to drive "T" toward the top, or antenna, end of the RF Tuner main coil, and remains so connected till such time as "T" trips TTLS switch S-436。 When S-436 is tripped, TTLR relay K-307 is energized, closing $K-307$ contacts $5 L-4 L, 4 R-5 R_{8}$ and $1 R-2 R$ and $T B L R$ relay $\mathrm{K}=308$ is deenergized through opening TTLR contacts 2L-3L (see Figure 210 in the Instruction Book). This constitutes the end of the "Reset" operation in the RF Tuner.

The "Reset" signal also performs a function in the Capacitor Assembly. Entering the ACG Cabinet on terminal H of P-1901 from Cable R-RT5, (see Figure 1), the "Reset" signal proceeds to terminal B of J-1903, which is connected to terminal B of P-451 by Cable R-RT8 (see Figure 5). The 24 VDC signal then energizes the Reset coil of $K-453$ (called S -451 on some drawings), the Sequence Selector (see Figure 2-17 in the Instruction Book). This operation returns the Sequence Selector to position 1, the "Ready-to-Tune" position.

8. "INTERROGATE" SIGNAL (4th SICNAL)

The "Interrogate" signal is sent out from the transmitter bay from terminal 74 of TB E-606 along wire 77 of Cable R-RT5 by the closing of contacts $3 R-4 R$ on $K-1306$, Dummy Load-Antenna Transfer Relay. The "Ready-to-Tune" signal provides the energy for operating K-1306 through contacts 9L-10L on K-1362, "Call for Antenna Tuning" relay. The receipt of the "Interrogate" signal in the ACG (see Figure 1) is recognized by the ACG as the start of its tuning cycle. RF energy has been sent to the RF Tuner by the operation of $\mathrm{K}-1306$.

The "Interrogate" signal energizes $\mathrm{K}-302$, Interrogate relay, and I-304, "RF On" lamp in the ACG C-I. When $\mathrm{K}-302$ is energized, the following operations occur:
(a) Contacts $2 R-3 R$ close providing 24 VDC from the "Ready-to-Tune Iine to terminal E of P-303/J-1908, ACG Cabinet wire 96, terminal S of J-1910/P-201, and to ground through the coil of K-203. Energizing $K-203$ supplies the two regulated 275 VDC outputs to terminals U and R on P-201.
(b) Contacts $2 \mathbb{L}-3 L$ close, closing the circuit between contact 3 R of $\mathrm{K}-311$, "Tuned (b)" relay, and contact 2 L of $\mathrm{K}-308$, TBLR relay.
(c) The 25-second "Auto-Jog" relay, $K-313$, is energized through contacts $2 R-1 \mathrm{R}$ of $\mathrm{K}-304,2 \mathrm{~L}-1 \mathrm{~L}$ of $\mathrm{K}-301,2 \mathrm{R}-3 \mathrm{R}$ of $\mathrm{K}-311$ and $2 \mathrm{~L}-3 \mathrm{~L}$ of $\mathrm{K}-302$ 。

9. SERVO AMPLIFIERS

Before discussing the "Tuned" Signal (5th Signal, in normal operation) it is necessary to consider the operation of the servo amplifiers. Each of the two servo amplifiers is made up of a premamplifier,

Electronic Control Amplifier AM-556/URT, and a power amplifier, Electronic Control Amplifier AM-555/URT. Both servo amplifiers are identical and may be interchanged.

The purpose of the pre-amplifier is to receive the DC signal from the sensing circuits (see Figure 4), convert it to a $60-c y c l e$ square wave by means of $\mathrm{K}-101$ (see Figure 2-12 in the Instruction Book), amplify the 60 -cycle square wave and send it to the power amplifier over terminals C and D of $\mathrm{P}-101 / \mathrm{J}-1904$ or $\mathrm{P}-101 / \mathrm{J}-1906$. J-1904 is connected to the "T" power amplifier by the ACG Cabinet wiring; and J-1906, to the "C" power amplifier. The full schematic of this circuit is at the top of Figure 2-27 in the Instruction Book.

The power amplifier receives the output of the pre-amplifier over terminals D and F of $P-151$ from the ACG Cabinet wiring and J-1909 for the "T" servo and J-1911 for the "C" servo. The power amplifier amplifies the sensing signal from the pre-amplifier and delivers its power to terminals J and L of $\mathrm{P}-151$, and then to the "T" or "C" servo motor through the ACG Cabinet wiring and Cable R-RT6 (see Figure 3). The power amplifiers are push-pull, two-stage, low frequency audio ampli-m fiers with feedback provided so as to lower the source impedance of the power fed to the servo motors. The feedback effectively reduces the output impedance of the servo amplifier from 330 ohms at peak input signal to 17 ohms at zero input signal. Thus, a virtual short circuit exists across the servo motor variable phase (control winding) when no signal is supplied, and the motors are brought to a quick stop with no tendency to run single phase.

Electronic Control Amplifier AM-556/URT, and a power amplifier, Electronic Control Amplifier AM-555/URT. Both servo amplifiers are identical and may be interchanged.

The purpose of the pre-amplifier is to receive the DC signal from the sensing circuits (see Figure 4), convert it to a 60 -cycle square wave by means of K-101 (see Figure 2-12 in the Instruction Book), amplify the 60 -cycle square wave and send it to the power amplifier over terminals C and D of P-101/J-1904 or P-101/J-1906. J-1904 is connected to the "T" power amplifier by the ACG Cabinet wiring; and J-1906, to the "C" power amplifier. The full schematic of this circuit is at the top of Figure $2-27$ in the Instruction Book.

The power amplifier receives the output of the pre-amplifier over terminals D and F of P-151 from the ACG Cabinet wiring and J-1909 for the "T" servo and J-1911 for the "C" servo. The power amplifier amplifies the sensing signal from the pre-amplifier and delivers its power to terminals J and L of $\mathrm{P}-151$, and then to the "T" or "C" servo motor through the ACG Cabinet wiring and Cable RaRT6 (see Figure 3). The power amplifiers are push-pull, two-stage, low frequency audio amplio fiers with feedback provided so as to lower the source impedance of the power fed to the servo motors. The feedback effectively reduces the output impedance of the servo amplifier from 330 ohms at peak input signal to 17 ohms at zero input signal. Thus, a virtual short circuit exists across the servo motor variable phase (control winding) when no signal is supplied, and the motors are brought to a quick stop with no tendency to run single phase.
(a) Servo Pre-Amplifier (Figure 2-12 in the Instruction Book) The incoming signal to the pre-amplifiers is filtered by capacitors $C-106$ and $C-107$ and choke coil L-101 to remove any stray $R F$. The signal then passes through the derivative control network of resism tor R-111 and capacitor C-105 to K-101, DC to AC Chopper, which converts the DC signal to a 60 meycle square wave. The derivative control network is provided to r educe the hunting of the servo motors during operation of the ATE. With a steady state signal from the sensing circuit, the capacitor acts as an open circuit and all the current passes through R-111, causing a large voltage drop at terminal 3 of $\mathrm{K}-101$. The values of the components of the derivative control network are chosen for the particular natural frequency of hunt for the servo system, which is approximately three cycles per second. At 3 cps , the impedance of the capacitor is approximately equal to that of the resistor, and half the current passes through each branch of the network. For a high rate of change (large derivative) of the error signal from the sensing circuit, indicating that the equipment is approaching the tuned condition, the voltage at the input to the chopper is much larger than when the error is changing slowly. The network then sends a negative pulse back to the motors which acts as an electric brake preventing the motors from overrunning the tuned point they are seeking. $K-101$ converts the dc signal to two oppositelymphased 60 -cycle square waves and feeds them separately to the grids of the first stage amplifier tube V-101 after being filtered by capacitors $\mathrm{C}-108$ and $\mathrm{C}-109$. Resistors $\mathrm{R}-101$ and $\mathrm{R}-102$ are grid bias resistors and $\mathrm{R}-103$ is the cathode bias for $\mathrm{V}-101$. The
(a) Servo Pre-Amplifier (Figure 2-12 in the Instruction Book) The incoming signal to the premplifiers is filtered by capacitors $\mathrm{C}-106$ and $\mathrm{C}-107$ and choke coil $\mathrm{L}-101$ to remove any stray RF_{s} The signal then passes through the derivative control network of resistor R-111 and capacitor C-105 to K-101, DC to AC Chopper, which converts the DC signal to a 60 -cycle square wave. The derivative control network is provided to reduce the hunting of the servo motors during operation of the ATE. With a steady state signal from the sensing circuit, the capacitor acts as an open circuit and all the current passes through R-11I, causing a large voltage drop at terminal 3 of $K-101$. The values of the components of the derivative control network are chosen for the particular natural frequency of hunt for the servo system, which is approximately three cycles per second. At 3 cps , the impedance of the capacitor is approximately equal to that of the resistor, and half the current passes through each branch of the network. For a high rate of change (large derivative) of the error signal from the sensing circuit, indicating that the equipment is approaching the tuned condition, the voltage at the input to the chopper is much larger than when the error is changing slowly. The network then sends a negative pulse back to the motors which acts as an electric brake preventing the motors from overrunning the tuned point they are seeking. $K-101$ converts the dc signal to two oppositelymphased 60 cycle square waves and feeds them separately to the grids of the first stage amplifier tube V-101 after being filtered by capacitors C-108 and C-109. Resistors R-101 and R-102 are grid bias resistors and $R-103$ is the cathode bias for $V-101$. The
pre-amplifier signal is then fed to the second stage amplifier tube V-102. Each of the coupling capacitors C-101, C-102, C-103, and C-104 shapes and shifts the phase of the signal so that by the time it passes through the second stage amplifier and power amplifier and arrives at the appropriate servo motor, it is a sine wave of the proper phase. To aid in this process, phase shift capacitors $\mathrm{C}-112, \mathrm{C}=113$ and $\mathrm{C}-114$ have been placed across the outputs of the first and second stage amplifier tubes.

Potentiometers R-110A and R-110B are adjustable gain control potentiometers, and $\mathrm{R}-104$ is the cathode bias for the second stage amplifier V-102. Resistor R-113 is an isolation resistor between the two square wave circuits. The tube filaments and the chopper are fed from the 6.3-volt line of the ACG PS, terminal M on P-201, and the plate supply from the 275 -volt line.
(b) Servo Power Amplifier (Figure 2-13 in the Instruction Book) The input signal from the pre-amplifier enters the power amplifier through relay K-151 contacts $1 L$ and $2 L$, and $4 L$ and $5 L$ which in automatic tuning are connected to the grids of the driver amplifiers V-151 and V-152. The amplified signal is fed through coupling capacitors $C-151$ and $C-152$ to the control grids of the output tubes $V-153$ and V -154, where it is amplified again and sent to the output coupling transformers $T-151$; this provides the final phasing and shaping of the signal which originated as a square wave in the premamplifiers. The output of the second stage is fed back through the feedback network composed of $\mathrm{R}-157, \mathrm{R}-158, \mathrm{R}-159$, and $\mathrm{R}-160$ to the grids of the second
half of the first stage amplifier tubes. Plate power to all tubes of the power amplifier is supplied from the 275 -volt line, terminal C on P-151 (see Figure 3, page 2 for "T" Servo), and is reduced where necesm sary by means of dropping resistors. Grid bias of the first stage tubes is maintained by resistors $R-154$ and $R-155$ and on the output tubes by cathode resistor $\mathrm{R}-163$. Cathode bias is provided by resistors $\mathrm{R}-168$ and R-169 connected to ground from $V-151$ and V-152. Cathode bias for the output tubes is provided by grid return resistors $R-161$ and $R-162$ connected to ground. Resistors R-170 and R-171 are voltage dropping resistors from the 275 -volt line to the screen grids of the output tubes of the amplifier.

Relay K-151 is energized during manual tuning because the operator, rather than the amplifiers, tunes the equipment through the "MANUAL TUNING" and the "MMANUAL COUPLING" switches on the ControlIndicator panel, and the amplifiers are not required to run the motors. "LOCAL-REMOTE" switch, S-201, in the ACG FS energizes K-151 during manual tuning, when it is set on "LOCAL".
10. CONDITIONS FOR A TUNING SCAN

When the ATE is set to tune automatically and assuming that the "Reset" operation has been completed, TTLR relay, $K-307$, and Interrogate relay, K-302, are energized before the ATE tuning cycle starts. Relay K-203 is energized (see paragraph 8 (a) on page 6) in order to supply power to the servo and SWR monitor amplifiers and to the "TUNE" and "COUPLE" meter circuits (see Figure 3, page 2). The output of the SWR monitor amplifier is such that SWRC (standing wave ratio control) relay,
half of the first stage amplifier tubes. Plate power to all tubes of the power amplifier is supplied from the 275 -volt line, terminal C on P-151 (see Figure 3, page 2 for "T" Servo), and is reduced where necessary by means of dropping resistors. Grid bias of the first stage tubes is maintained by resistors $\mathrm{R}-154$ and $\mathrm{R}-155$ and on the output tubes by cathode resistor R-163. Cathode bias is provided by resistors R-168 and R-169 connected to ground from V-151 and V-152. Cathode bias for the output tubes is provided by grid return resistors $R-161$ and $R-162$ connected to ground. Resistors R-170 and R-171 are voltage dropping resistors from the 275 -volt line to the screen grids of the output tubes of the amplifier.

Relay $K-151$ is energized during manual tuning because the operator, rather than the amplifiers, tunes the equipment through the "MANUAL TUNTNG" and the "MANUAL COUPLING" switches on the Controlm Indicator panel, and the amplifiers are not required to run the motors. "LOCAL-REMOTE" switch, S-201, in the ACG PS energizes K-151 during manual tuning, when it is set on "LOCAL".
10. CONDITIONS FOR A TUNING SCAN

When the ATE is set to tune automatically and assuming that the "Reset" operation has been completed, TTLR relay, $\mathrm{K}-307$, and Interrogate relay, $K-302$, are energized before the ATE tuning cycle starts. Relay K-203 is energized (see paragraph $\delta(a)$ on page 6) in order to supply power to the servo and SWR monitor amplifiers and to the "TUNE" and "COUPLE" meter circuits (see Figure 3, page 2). The output of the SWR monitor amplifier is such that SWRC (standing wave ratio control) relay,

K-317, in the ACG C-I, is energized in such manner as to close contacts 4 and 6, thereby energizing SWRH (standing wave ratio high) relay, K-316. $\mathrm{K}-316$ is locked in through 24 VDC from terminal J of P-301 (see Figure 1) through contacts $5 \mathrm{~L}-4 \mathrm{~L}$ of Tuned (c) relay, $\mathrm{K}-305$, contacts $4 \mathrm{~L}-5 \mathrm{~L}$ of SWRL (standing wave ratio low) relay, $K-315$, and contacts $5 \mathrm{R}-6 \mathrm{R}$ of K-316.
11. CONDITIONS FOR A "TUNED" SIGNAL

It is necessary that three conditions be met or nearly so during a tuning scan in order that a "Tuned" signal may be sent to the transmitter bay. These are as follows:
(a) The "T" sensing circuit output voltage must be zero; i。e., the antenna load reactance must be zero.
(b) The "C" sensing circuit output voltage must be zero; i。e., the antenna load impedance must be equal to 180 ohms as seen from the "C" sensing circuit, or,
(c) Since full realization of (a) and/or (b) is impractical, the output from the 2:1 tap on the SWR monitor circuit must be zero or a slightly positive DC error voltage -- 2:1 SWR or less.

12. SERVO MOTOR AND LIMIT SWITCH CIRCUITS

The tuning scan involves the simultaneous operation of both the "T" and the "C" elements in the RF Tuner by their respective servo motors. The "T" servo motor drives the shorting sleeve, "T", seeking a reactive zero, or near zero, point. Simultaneously, the "C" servo motor drives the coupling coil, "C", seeking an impedance match to the 180 ohm line, which in turn means an impedance match of 50 ohms as seen from the
transmitter bay. A tuned condition means that both "T" and "C" are close enough to the perfect tune point that the combination error does not cause more than a $2: 1$ SWR.
(a) "T" Servo Motor and Limit Switch Circuit (Figure 2-10 in the Instruction Book)
At the beginning of the tuning scan, "T" is at the top of the main coil and TTLR relay, K-307, has been energized by S-436. For a very short period of time, "T" is driven down the main coil of the RF Tuner by a phase shifted 110 VAC signal to the control winding through contacts 1R-2R of K-307 to terminal 1 of $\mathrm{B}-435$ and through contacts $4 R-5 R$ of $K-307$ and contacts $3 R-2 R$ of $K-308$ to terminal 3. When "T" has moved a sufficient distance down the main coil, S-436 opens and $\mathrm{K}-307$ is deenergized. At this time two things happen, which are as follows:
(1) L-435, the "I" servo motor clutch, is now supplied a 24 VDC signal through contacts $2 R-1 R$ of $K-303$, contacts $3 L-2 L$ of $K-316=$ energized at this time --, contacts 2L-IL of K-304, contacts 6L-5L of $\mathrm{K}-308$, and contacts $6 \mathrm{~L}-5 \mathrm{~L}$ of $\mathrm{K}-307$ 。
(2) The "T" servo amplifier takes control of the "T" servo motor, B-435, by a direct connection of its output to terminals I and 3 - the control winding.

Since, under this condition, the "T" sensing circuit will see a reactive antenna load in most cases, and since the "T" servo motor cannot drive upward due to the "T" top limit switch and relay, the "T" servo motor will drive "T" downward; $i_{\text {. }} e_{0,}$ towards the bottom of the main coil of the RF Tuner. The case could be simplified by considering
that the frequency were less than 6 mos for a $35-$ foot "Whip" antenna. Under this condition the "T" sensing circuit output would be a negative DC error voltage due to the capacitive reactance of the antenna load. It is obvious that under this condition the zero reactance point on the main coil of the RF Tuner is downard, and the "T" servo motor will drive "T" toward a point which gives a less negative error voltage at the output of the "T" sensing circuit. However, since K-302, the Interrogate relay, remains energized until such time as a "Tuned" or "Misso match" signal is obtained, and since a maximum of 20 seconds is required to send "T" to the top of the main coil when driven by a phase shifted 110 VAC line to the control winding of the servo motor, "T" will be driven downward for five seconds - about 5 inches out of the 22 inches on the RF Tuner main coil. It must be understood, of course, that at the same time $\mathrm{K}-309$, CTLR, through $\mathrm{S}-440$, CPTLS, is preventing more than 40 percent of the coupling coil to extend above "T" at the top of the main coil and a progressively larger amount of "C" to be extended as "T" moves dowward (see Figure 2-9 in the Instruction Book)。 During the fivemsecond downward scan, the "T" servo amplifier will reverse the direction of the "T" servo motor if the error voltage output of the "T" sensing circuit passes through the zero point. It will be observed that this does not introduce a large loss factor or degree of inefficiency since the 5 inches of downard travel, if carried to its culmination, would only mean that all frequencies above about 3.94 mes were tuned to the first or greater odd multiple of a quarter wave length with a 35 foot "Whip" antenna. However, even this loss will not be apparent
since the "T" element will tune the reactive portion of the antenna load impedance to zero or nearly so, except in those cases where the effective length of the antenna plus the RF Tuner main coil is less than a quarter wave-length. Those frequencies near 300 kcs fall in this last case; and, by practical experience, any frequency below 400 kcs may fail to tune due to the fact that the quarter wave-length point falls beyond the bottom end of the main coil.

The case of a failure to tune during the downward scan of the "T" element will not be discussed here, but will be covered in paragraph 14。
(b) "C" Servo Motor and Limit Switch Circuit (Figure 2-9 in the Instruction Book) When "T" moves to the top of the RF Tuner main coil and starts its downward scan, the CPTLS switch, S-440, will have controlled the position of the coupling coil, "C", through the operation of $\mathrm{K}-309$, so as to prevent more than 40 percent of "C" protruding above "T" at the time "T" is at the top of the RF Tuner main coil. This is of importance in that the efficiency of the coupling coil would be reduced if it protruded to such an extent that its total length were more than a half wave-length at any frequency. It may be shown that the frequency for which the coupling coil extends to such an extent that it approaches a half wave-length in length, when 40 percent of " C " is extended above "T", is greater than 26 mcs.

When $\mathrm{K}-309$ is energized, "C" is driven downward by the "C" servo motor in a manner similar to the operation of the "T" servo motor searching for a point where the "C" sensing circuit output will be zero.
since the "T" element will tune the reactive portion of the antenna load impedance to zero or nearly so, except in those cases where the effective length of the antenna plus the RF Tuner main coil is less than a quarter wave-length. Those frequencies near 300 kcs fall in this last case; and, by practical experience, any frequency below 400 kcs may fail to tune due to the fact that the quarter wave-length point falls beyond the bottom end of the main coil.

The case of a failure to tune during the downward scan of the "T" element will not be discussed here, but will be covered in paragraph 74。
(b) "C" Servo Motor and Limit Switch Circuit (Figure 2-9 in the Instruction Book) When "T" moves to the top of the RF Tuner main coil and starts its downward scan, the CPTLS switch, $S-440$, will have controlled the position of the coupling coil, "C", through the operation of K-309, so as to prevent more than 40 percent of "C" protruding above "T" at the time "T" is at the top of the RF Tuner main coil. This is of importance in that the efficiency of the coupling coil would be reduced if it prom truded to such an extent that its total length were more than a half wave-length at any frequency. It may be shown that the frequency for which the coupling coil extends to such an extent that it approaches a half wave-length in length, when 40 percent of " C " is extended above "T", is greater than 26 mcs.

When $\mathrm{K}-309$ is energized, " C " is driven downward by the " C " servo motor in a manner similar to the operation of the "T" servo motor searching for a point where the "C" sensing circuit output will be zero.

It will be observed that the output of the "C" sensing circuit is a positive DC error voltage for an antenna load impedance more than 180 ohms, and negative for an antenna load impedance less than 180 ohms. The output of the "C" sensing circuit drives "C" with respect to "T"
 and maximum coupling -- that proportion of "C" above "T" permitted by the operation of $S-440$, CPTLS. However, it should be pointed out here that in the case of "C", as soon as $5-437$, CBLS, opens due to the upom ward travel of " C " with respect to ${ }^{\prime \prime} T^{\prime \prime}$, the ${ }^{\prime \prime} \mathrm{C}$ " servo amplifier assumes control of the "C" servo motor. It will be observed that "Tr will be locked in by the operation of S -435 (see Figure 2-10 in the Instruction Book) until such time as Sol 436 , TTLS, closes. This means that "T" is controlled by a phase shifted 110 VAC during the upward drive in all cases. The "C" servo motor stops operation at the same time as the "T" servo motor, which is at such time as the output of the SWR monitor amplifier is affected by a positive voltage at terminal 7 of $\mathrm{V}-302$ and a greater plate current passes to terminal 8 of $\mathrm{K}-317$, SWRC, through the coil to terminal I_{2} and back to the 275 -volt $D C$ supply through R-319. This greater current closes contacts 6 to 7 on $K-317$, which indicates that the SWR is equal to or less than 2:1. 13. "TUNED" SIGNAL (5th Signal in Normal Operation)

The closing of contacts 6 to 7 on K-317 initiates the cycle which may or may not result in a "Tuned" signal. At this time SWRL (standing wave ratio low) relay, $K-315$, is energized by a 24 VDC signal from terminal J on P-301 (see Figure 1) through contacts 5L-4L of Tuned (c)
relay, $K-305$, and contacts $6-7$ of $K-317$. The lock on $K-316$, SWRH , is broken when contacts $4 \mathrm{~L}-5 \mathrm{~L}$ of $\mathrm{K}-315$ open, and I-303, Tuned lamp, on the front of the ACG C-I is lighted through contacts $2 R-3 R$ of $K-315$ and contacts 5L-4L of K-303, Mismatch relay. Breaking contacts 2L-3L of $K-316$, SWRH, breaks the 24 VDC lead to the "T" and "C" servo motor clutches and stops the movement of "T" and "C". $\mathrm{K}-315$, SWRL, is locked in through contacts 1R-2R of $\mathrm{K}-316$ and contacts $5 \mathrm{R}-6 \mathrm{R}$ of $\mathrm{K}-315$. Closing contacts $2 L-3 L$ of $K-315$ starts $K-322$, Tuned (a) (1-second TD), through its cycle. If, at the end of one second, the tuned condition is still maintained, the Tuned (c) relay, $\mathrm{K}-305$, is energized through the closing of contacts 5L-4L of Tuned (b) relay, K-311.

Relay K-322 consists of a resistor-capacitor time constant network which fires a gas tube to energize Tuned (b) relay, K-31l. If the circuit to $K-322$ is interrupted before the gas tube fires, $K-311$ is not energized.

14. CAPACITOR ASSEMBLY OPERAT ION

If "T" and "C" have scanned all the way to the bottom of the RF Tuner main coil looking for a tuned condition and not finding it, $\mathrm{S}=435$, TBLS, will close energizing K-308, TBLR. This provides a phase shifted 110 VAC signal to the control winding of B-435 (see Figure 2-10 in the Instruction Book) which acts to drive "T" to the top of the RF Tuner main coil. Contacts $2 L-1 L$ of $K-308$, TBLR, have closed sending a 24 VDC signal to the step coil of K-453 (see Figure 2-17 in the Instruction Book) through terminal J of P-303 (see Figure 5). When K-453 steps to position 2, a $100 \mu \mu \mathrm{p}$ capacitor is added in series with the RF lead to the antenna. The tuning cycle then proceeds again.

In like manner, if a "Tuned" condition does not result on this downard scan of the "T" and "C" elements of the RF Tuner, a second signal will be transmitted to the Capacitor Assembly and two 100 / $\mu \mathrm{ud}$ capacitors in parallel are shunted across the RF feed line to ground, 15. "MMSMATCH" SIGNAL (5th Signal in Abnormal Operation)

In the event the third scan of "T" and "C" does not result in a "Tuned" signal, terminal A of P-451 is connected to terminal G of P-451 through positions 4 through 10 of $\mathrm{K}-453$. This energizes the Mismatch relay, K-303, through terminal M of P-303 (see Figure 5). When K--303 is energized, contacts $2 \mathrm{R}-3 \mathrm{R}$ close, sending a 24 VDC signal out over terminal D of P-301 to the transmitter bay (see Figure 1). This 24 VDC signal proceeds over wire 79 of Cable R-RT5 to TB E-606, terminal 76, and from there it lights I-1316, "Mismatch" lamp, on the RFA front panel, and energizes $\mathrm{K}-1365$, "Mismatch" relay, in the RFA. Closing contacts 5L-6L of K-1365 lights I-1317, "Alarm" lamp, on the RFA front panel and energizes I-1318, signal buzzer providing an aural alarm. Under this condition, the operator must resort to manual tuning.

16. MANUAL TUNING PROCESS

In manual operation, the operator takes over the functions of the amplifiers and the automatic relay system operation of the control indicator. Instead of sending the outputs of the sensing circuits to the amplifiers which control the servo motors in automatic operation, the operator monitors the antenna tuning equipment by observing the antenna match meter and the position indicators, and adjusts the positions of the shorting sleeve and coupling coil by means of the "MANUAL TUNING"
and "MANUAL COUPLING" jog switches, S-304 and S-303, respectively, on the ACG C-I panel. For manual operation, the "LOCAL-REMOTE" switch, S-201, on the ACG PS is set on "LOCAL". This opens all circuits which energize the control relays in the antenna tuning equipment, and it energizes Local relay, K-304, connecting the manual controls, the "RESET" and "STEP" push buttons, S-306 and S-305, respectively, and the jog switches, S-304 and S-303, on the ACG C-I panel. The jog switches are momentary single-pole, doublemthrow, center-off switches that operate the tune and couple limit relays controlling the drive of the servo motors. The antenna match meter indicates the direction in which the movable tuning elements must be driven in order to establish a match of $2: 1$ or better. The "LUNE" and "COUPLE POSITION" meters also enable the operator to determine the tuned point by indicating the relative positions of "T" and "C" on the main coil. The position meters read zero when the elements are at the bottom of the main coil and read full scale for "T" when "T" is at the top of the main coil and for "C" when "C" is completely extended above "T". If the operator knows the proper positions for the shorting sleeve and the coupling coil for tuning at a particular irequency, he may by means of the jog switches and the information on the position meters quickly arrive at a balanced condition. The magnitude of the error shown on the antenna match meter is dependent on the power level, and actually increases as the tuned point is approached; therefore, it is not an indication of proximity to a balanced condition.

At higher frequencies, the region where the standing wave ratio is less than 2:1 is very small; and the equipment may miss the first point
of possible balance and tune at the second or even the third point. The first point has the highest efficiency, but lower points may be required for stable tuning. The reason for this is that at high frequencies, the wave length is relatively short and the Q of the balance points is high. This means that the tuning is critical because the Q curve is very narrow. At low frequencies fewer points of balance exist, and the region is wider so that tuning at the optimum efficiency is not difficult.

As in automatic tuning, it may be necessary to add capacitance in series or parallel with the antenna. This is accomplished manually by pressing the "STEP" switch, S-305, on the control indicator panel. Each time it is pressed, the stepping switch K-453 switches to its next position.

Manual tuning allows the operator under emergency conditions to tune the antenna to a match that is not as efficient as the nominal value reached in automatic tuning. At such a value, only the 100 -watt transmitter level may be employed. Manual tuning also provides a means of tuning in case of faulty operation of the automatic process.

RESTRICTED

APPENDIX "A"

LIST of MAJOR UNITS in ATE

		Component	AN Type No.	Ref. Symbol
	(a)	Electronic Control Amplifier (Electronic Control Pre-Amplifier)	AM-556/URT	101-150
		Electronic Control Amplifier	AM-555/URT	151-199
		Power Supply	PP-708/URT	201-299
		Control Indicator	C-915/URT	301-399
		Cabinet	CY-1047/URT	1901-1999
II	Radi	- Frequency Tuner	TN-197/URT	401-450
III	Capa	citor Assembly	CB-5/URT	451-499

APPENDIX "B"

LIST of ATE RELAYS and SWITCHES

I Antenna Control Group OA-297/URT
(a) Cabinet CY-1047/URT

No relays or switches are contained within this unit.
(b) Electronic Control Amplifier AM-556/URT (Pre-Amplifier)

1. K-101: DC to AC Chopper (Non-Synchro vibrator)
(c) Electronic Control Amplifier AM-555/URT (Power Amplifier)
2. K-151: Disable Relay
(d) Power Supply PP-708/URT
3. K-201: Plate Supply Relay (20 sec. TD)
4. K-202: "Transmitter ON"
5. K-203: Plate Supply Relay
6. S-201: "Local-Remote" Switch
7. S-202: "Emergency" Switch
(e) Control Indicator C-915/URT
8. K-301: Reset Relay
9. K-302: Interrogate Relay
10. K-303: "MISM" (Mismatch) Relay
11. K-304: Local Relay
12. K-305: Tuned (c) Relay
13. K-306: No Relay exists for this number
14. K-307: TTLR Relay
15. K-308: TBLR Relay
16. K-309: CTLR Relay
17. K-310: CBLR Relay
18. K-311: Tuned (b) Relay
19. K-312: No Relay exists for this number
20. K-313: Mismatch Relay ($25 \mathrm{sec}, \mathrm{TD}$)
21. K-314: No Relay exists for this number
22. K-315: SWRL Relay
23. K-316: SWRH Relay
24. K-317: SWR Relay (Polar Sensitive Null Type)
25. K-318: DC to AC Chopper (Non-Synchro vibrator)
26. K-319: Synchronous Rectifier (Non-Synchro vibrator)
27. K-320: No relay exists for this number
28. K-321: Protective Relay (Protects B-437 motor)
29. K-322: Time Delay Relay (1.0 Sec.)
30. S-301: No switch exists for this number

APPENDIX "B"

Page 2.

24. S-302: No switch exists for this number
25. S-303: Tune Motor Jog Switch ((PP) - "MANUAL TUNING")
26. S-304: Couple Motor Jog Switch (RR) "MANUAL COUPLING")
27. S-305: Reset Switch - "RESER")
28. S-306: Step Switch (NM- "LOADING UNIT STEP")
29. S-307: Switching (Used only in preventive-corrective maint.)
II RF Tuner TN-197/URT
30. No relays are contained within this unit.
31. S-401 through $S-434$: No switches exist for these numbers.
32. S-435: TBLS Switch
33. S-436: TTLS Switch
34. S-437: CBLS Switch
35. S-438: CTLS Switch
36. S-439: Overheat Switch (Thermostat)
37. S-440: CPTLS Switch
III Capacitor Assembly CB-5/URT
38. K-451: Switching Relay (Series Capacitor Relay)
39. K-452: Switching Relay (Shunt Capacitor Relay)
40. K-453 or $\mathrm{S}-451$: Sequence Selector (T_{p} Stepping Relay)

Figure 1:- Terminal Connections for Cable R-RT5.

Figure 2:- 24 VDC Supply in ATE

Figure 3 (Page 1 of 3):- Terminal Connections for Cable R-RT6

Reg. 25 VDC Input and "Hi" sides of $R-435$ and $R-436$ B-437, Term's. 2 \& 4

24 VDC Input
B-436, Term.1, "C" Servo
B-435, Term.1, "T" Servo
R-436, "T" Pot. Output
L-437, "T" Clutch
Relay Side of $\mathrm{S}-435$, TBLS
"Hi" side of $K-308$, TBLR
5 L on $\mathrm{K}-307$, TTLR
One side $R-307$
2 R on $\mathrm{K}-307$, TPLR
2 R on $\mathrm{K}-309$, CTLR
2 R on $\mathrm{K}-321$, Blower
T-301, Term. 1

T-201, Term. 2
275 VDC Input
275 VDC from V-204
T-151, Term. 2

P-435 J-1901
TERM. TERM.

$\mathrm{K})-(\mathrm{K}-18$
L) $\quad(\mathrm{L}-16$

T E R M I N A L S

$\mathrm{J}-1904 /$	$\mathrm{J}-1909 /$	$\mathrm{J}-1910 /$
$\mathrm{P}-101$	$\mathrm{P}-151$	$\mathrm{P}-201$

Legend: -12_ACG Cabinet Wire No. 12
-(3)- ACG Main Terminal Board Term. No. 3
Figure 3 (Page 2 of 3):- Terminal Connections for Cable R-RT6
$\underline{R E S I R I C T E D}$
MRT-64

Figure 3 (Page 3 of 3):- Terminal Connections for Cable R-RT6

RF TUNER
CONNECTION

No Connection
"C" Sensing Ckt.
暲 Sensing Ckt.
Ground

No Connection
SWR Monitor $4 / 1$
SWR Monitor $2 / 1$
No Connection

ACG
CONNECTION

One Side R-327
R-328/R-329 Jnct. C-107/L-101 Jnct.

Term. 4R, K-305
Term. 2L, K-305
C-107/L-101 Jnct.

P-436
TERM.

> J-1902

THRN.

> ACG CAB.

ACG MTB WIRE NO. TERM.NO.

Figure 4:-- Terminal Connections for Cable R-RT7.

CONNECTION
P-451
J-1903
TERM。
TERM.
C)

(C
 39

ACG CAB. ACG MTB WIRE NO. TERM.NO.
(Step Coil)
"Hi" Side K-453

Time Allotted: - 4 Hours

SUBJECT: Anterna Tuning Equipment and Control Circuits
OBJECTIVE:

EQUIPMENT REQUIRED:

PROCEDURE:

CONCLUSION: Students will return shop to proper status for next class.

Time Allotted: -2 Hours

SUBJECT: Installation and Checkout

OBJECTIVE: To provide general information concerning the installation and checkout of the AN/URT-2, -3, and -4 Radio Transmitting Sets. Emphasis will be placed on those items of major importance to maintenance personnel.

SUBJECT
MATERIAL:

CONCLUSION: It has been found that numerous difficulties in maintenance may be traced to the manner of installation. A good electronics technician will double check any new installation in order that corrective measures may be taken while still in the yard.

Time Allotted：－ 2 Hours

SUBJECT：	Preventive Maintenance－－Procedures
OBJECTIVE：	To provide the student with adequate information concern－ ing the procedures used in preventive maintenance of the AN／URT－2，－3，and－4 Radio Transmitting Sets．The in－ structor will stress that corrective maintenance will be inversely proportional to the amount of preventive main－ tenance and the quality of the preventive maintenance．
SUBJECT MATERIAL：	1．Refer the student to Section 6，Text and Illustra－ tions，in the Instruction Book．
	2．Introduction and explanation of weekly records（See pages $6-1,6-2$ ，and Sample Weekly Record Chart 6－3）．
	3．Proper use of Routine Maintenance Check Chart（See pages $6-7$ and Table $6-2$ on pages $6-8$ through $6-28$ ）。
	4．Lubrication Procedures．
	（a）General Procedure（see page 6－31）． （b）RF Tuner Procedure（see pages 6－32 through 6－34）． （c）Lubricants（see Table $6-3$ ，pages $6-35$ through 6－38）。
	5．Stress all safety precautions to be observed．
CONCLUSION：	A step－by－step Routine Maintenance Check Chart is pro－ vided and no difficulty should be encountered by the student．
QUESTIONS AND／OR	
ORAL QUIZ：	Time should be allowed for the students to ask questions．

Time Allotted: - 4 Hours

SUBJECT:	Equipment Checkout
OBJECTIVE:	To run through a complete checkout of the AN/URT-() Radio Transmitting Set. The instructor will stress the importance of an orderly approach to equipment checkout.
EQU IPMENT REQUIRED:	1. One (1) or more completely installed $A N /$ URT $-2,-3$ and/or -4 Radio Transmitting Set(s).
	2. One (I) or more ME-25A/U VIVM(s).
	3. One (1) or more ME-48A VOM(s).
	4. One (1) or more AN/USM-3 Test Tool Set (s).
	5. One (1) or more Adapter Plug(s).
	6. One (1) or more 500-watt Dummy Load(s).
PROCEDURE:	The student(s) will follow the step-by-step procedure listed in paragraph 6, Section 3, of the Instruction Book.
CONCLUSION:	Students will return the shop to the proper status for the next class.

Time Allotted: - 4 Hours

SUBJECT:	Preventive Maintenance -- Practice
OBJECTIVE:	To provide practice in performing the periodic checks designed to keep outage time of equipment at a minimum.
EQUIPMENT REQUIRED:	1. One AN/URT-() Radio Transmitting Set in proper operating order.
	2. One ME-25A/U VTVM, or equivalent.
	3. One ME-48A, or equivalent.
	4. One AN/USM-3 Test Tool Set, or equivalent.
	5. One RF Tuner Test Set.
	6. One 50-ohm, 500-watt Dummy Load.
	7. One shorting plug.
	8. One ACG Test Set.
	9. One receiver capable of receiving 10 mcs signals.
	10. Dry cloths, oils, greases, brushes, etc., as determined by the instructor.
PROCEDURE:	1. Each student will perform all measurements and record readings in one column of Table 6-1 for standard conditions specified by the instructor.
	2. The students will be separated into groups as necesm sary and will perform the Routine Maintenance Checks as specified in Table 6-2, for Daily, Weekly, and Monthly checks. The measurements of Table 6-1. should not be recorded a second time; however, where readings vary with frequency, the variation should be noted.
	3. The instructor will direct the students in the performance of quarterly checks as specified in Table 6-2。
	4. Semi-Annual and Annual checks will be performed during Shop Exercises 15, 16, and 17 at the discretion of the instructor.

CONCLUSION: After all work has been checked by the instructor, stum dents will return the shop to proper order for the next class.

Time Allotted: - 4 Hours
SUBJECT: \quad Corrective Maintenance - - Procedures

OBJECTIVE: To familiarize the student with the methods used in lom calizing trouble in the AN/URT-2, -3 , and -4 Radio Transmitting Sets.

SUBJECT
MATERIAL: \quad. Part I - Transmitter Bay (2 $\frac{1}{2}$ Hours):-
(a) Refer the student to the Transmitter Bay portion of Section 7 of the Instruction Book.
(b) Stress will be given to finding the source of the trouble causing equipment failures as well as the repair of a trouble (see page $7-1$).
(c) Localizing trouble to a drawer is simplified by numerous signal lamps and certain aural alarms, together with the step-by-step charts. The students' attention will be drawn to Table 7-1, System Trouble Shooting Chart, and this chart will be explained in detail. The work experience of Shop Exercises 12, 15, 16, and 17 will be augmented in accordance with the students comprehension of Table 7-1 and other tables which follow.
(d) The instructor will point out the major unit corrective maintenance procedures:-
(1) RFO (see pages 7-4 through 7-17 and Table 7-2)
(2) LLRM (see pages 7-18 through top of page $7-26$ and Table 7-5).
(3) HLRM (see pages 7-26 through 7-28).
(4) RFA (see pages 7-29 through 7-30 and Tables 7-7 through 7-14)。
(5) LVPS (see page 7-31 and Table 7-15).
(6) MVPS (see page 7-33 and Table 7-16).
(7) HVPS (see page 7-34 and Table 7-17).
(8) Other Units (see pages 7-35 through 7-37).
(e) In some cases it may be necessary to refer to Servicing Block Diagrams in addition to the material of l.(d), above. The instructor will point out the usefulness of Figures 7-101 through 7-121 in servicing a major unit or units and will indicate the availability of comprehensive schematics and wiring diagrams in Figures 7-122 through 7-199。

Lesson Sheet No. 14
Page 2.
(f) The instructor will list the requirements for standard and special test equipment on the blackboard and discuss usage. (See Section 1, pages 1-31 through 1-38).
2. Part II - ATE ($1 \frac{1}{2}$ Hours):-
(a) Refer the student to the ATE portion of Section 7 of the Instruction Book.
(b) The instructor will stress the necessity for a clear analysis of the trouble in order that troubles occurring in one unit with indications in a second unit will not lead to loss of time in maintenance.
(c) System Trouble Shooting. At first, the student should be required to start with the procedure of Table 7-1 and follow step-by-step until the trouble is localized. The instructor will explain the reasons for this (see pages 1 through 5).
(d) The instructor will explain trouble shooting with and without RF in localizing a fault (see Table 7-1) 。
(e) The instructor will point out the major unit corrective maintenance procedures:-
(1) ACG (see pages 6 and 7 and Tables 7-2 and 7-3).
a. PP-708/URT (see pages 9 through 11). b. AM-556/URT (see pages 12 through top of 14).
c. AM-555/URT (see pages 14 through 16). d. C-915/URT (see pages 17 through 20 and Table 7-5).
e. CY-1047/URT (see page 25).
(2) RF Tuner (see pages 26 through 64, Tables 7-6 and 7-7).
(Note:- Disassembly, assembly, test and alignment of this unit are tedious operations and the instructor will stress again the use of Tables 7-1 and 7-2 in addition to Table 7-6, in order to avoid haphazard and indiscriminate disassembly).

(3) Capacitor Assembly (see pages 65 through 68).

(f) The instructor will ascertain that all students are familiar with the Failure Reports covered in Figure 7-1. A supply of these forms will be kept on hand and students will be required to fill out these forms for faults found during shop exercises. The instructor will stress the importance of reporting primary cause of failure and of filing Failure Reports for every failure no matter how small.

CONCLUSION: When the above tests, charts, equipment, and procedures have been mastered, locating trouble during shop exercises will not be difficult.

SHOP EXERCISE NO. 12

Time Allotted: - 12 Hours

SUBJECT:	Corrective Maintenance -- Practice
OBJECTIVE:	To provide the student with practice in the correction of faults in the AN/URT $-2,-3$, or -4 Radio Transmitting Set.
MATERIAL REQUIRED:	1. One completely installed $A N / U R T-2,-3$, or -4 Radio Transmitting Set.
	2. One set of test cables for same. 3. All standard and special test equipment. 4. All standard and special tools.
PROCEDURE:	1. Transmitter Bay Corrective Maintenance (4 Hours)。 The student will establish the location of the fault using only Table 7-1, "Corrective Maint enance for Transmitter Bay, ${ }^{\text {" }}$ and Figure 7-152. Faults will be simulated by the instructor. The student will not repair the faulty part or unit until such time as he has called the instructor and explained how the fault was found.
	2. ATE Corrective Maintenance (4 Hours). The student will establish the location of the fault using only Table 7-1, "Corrective Maintenance for Antenna Tuning Equipment, " and Figure 7-27. Faults will be simulated by the instructor. The student will not repair the faulty part or unit until such time as he has called the instructor and explained how the fault was found. 3. AN/URT- () Corrective Maintenance (4 Hours). The student will establish faults to an actual component in any unit of the AN/URTm () Radio Transmitting Set using any Table or Figure within the entire Instruction Book. Faults will be simulated by the instrucm tor. The student will not repair the faulty part or unit until such time as he has called the instructor and explained how the fault was found.
CONCLUSION:	At the end of the exercise, and after all work has been checked by the instructor, the students will return the shop to proper order for the next class.

Time Allotted: - 4 Hours

SUBJECT: Special Circuits

OBJECTIVE: To clarify any circuits which may be causing the student difficulty.

SUBJECT
MATERIAL:

CONCLUSION: The major difficulties met by students are usually traceable to a theoretical explanation of a circuit which was designed by "cut-and-try" methods. In some cases, these circuits do not lend themselves to easy theoretical explanation. In other cases the explanation is easy, but the concept being mathematical will be beyond the scope of this course.

QUESTIONS:
The student will be permitted to ask questions throughout this lecture; but the instructor may suggest further study in an available text unless the explanation is brief and of general interest to the class.

In any conventional oscillator circuit, such as shown in Figure l, the frequency of oscillation is inversely proportional to the LC product of the tuned circuit; i.e., $F=\frac{1}{2 \pi \sqrt{L C}}$. If either L or C is increased in value, the frequency will obviously decrease.

Figure 1 。

It is possible to vary the frequency of the above oscillator by mechanically varying the values of either L_{1} or C_{1}. A motormdriven variable capacitor could be used in place of capacitor C_{l} as a means of varying the frequency at a rate governed by the shaft speed of the directly coupled motor. Similarly, a variometer type of inductor consisting of a rotatable form carrying one winding and a fixed form carrying the other winding could be substituted for L_{1} in the above circuit. The rotatable coil could be driven by a motor and here again the frequency of the oscillator would vary at a rate governed by the speed of the motor shaft. In the above manner, we have accomplished frequency modulation of the oscillator by mechanically varying either the inductance L_{1} or capacitance C_{1} in the circuit.

Frequency moduiation of such an oscillator can also be produced by electronic means by the use of a vacuum tube reactance modulator circuit. Strange as it may seem, it is quite possible to make a vacuum tube behave as an inductance or a capacitance. For the purposes of this explanation we will first explain how a vacuum tube can be made to behave like an apparent inductance. If we can make the plate-cathode circuit of a vacuum tube look like an inductance, such a tube connected across an oscillating tank circuit will affect the frequency of the oscillations due to the fact that connecting two inductances in parallel results in a final value of inductance which is less than the smaller of the two values; hence, the frequency of the oscillator is increased.

Figure La. - Simplified Circuit of Reactance Control Tube (Inductive Case).

Figure Lb. - Vector Diagram of Figure Ra.

By means of a simple circuit arrangenent as shown in Figure 2a, the plate to cathode impedance of an ordinary pentode can be made to appear as an apparent or virtual inductive reactance. The tube used is one of the extended cut-off or variable mu type so that its transconductance, G_{m}, can be made to vary as a linear function of grid voltage. The reactance tube, $V-1$, has its plate and cathode connected across the tuned circuit of the oscillator and is thus excited by the RF output voltage, E_{p}. An RC phasemplitter network is also connected across the oscillator's tuned tank circuit. The value of R has been purposely selected so that it is at least equal to 5 times the reactance of $C_{\text {a }}$ This makes the effects of C negligible in comparison to the effects of R, as far as tank circuit loading is concerned. The impedance of the RC network is thus made to appear as an essentially pure resistive load to the tuned circuit. The vector diagram for this circuit is shown in Figure 2b. The vectors are not drawn to scale. Since the line current, I_{1}, is the same throughout the series RC circuit, the vector I_{1} has been chosen as a common base or reference for the diagram. Due to the fact that the network appears as an almost pure resistive load to E_{p}, the series curm rent I_{1} is almost in phase with the impressed voltage, E_{p}, and will be displaced by some very slight angle, \mathcal{L}, which has been arbitrarily chosen as being equal to only 2° for this particular case. If it were not for the minor effects of $C_{\text {, }}$ the voltage, E_{p}, would be exactly in phase with the current, $I_{l, s}$ and the small phase angle \mathcal{K} would be rem duced to zero. As can be later seen, however, the minor effects of 0 are of no consequence and can be considered as being negligible. It is a fundamental characteristic of any reactive element that the current flowing through the reactance will always be 90° out of phase with the voltage across it. In the case of a capacitive reactance, the voltage E_{c} across the capacitor will always lag the current I_{1} through the capacitor by an angle of 90°.

The $R F$ tank circuit voltage E_{p}, as well as $f B$ voltage, is fed to the plate of the reactance tube $V-1$; however, the tube will be relatively insensitive to the RF plate voltage E_{p} and little or no RF plate current will flow as a result. The reactive RF voltage drop across the capaciom tor, E_{C} is applied to the control grid of $\mathrm{V}=1$ and due to the fact that, it lags E_{p} by nearly 90°, the resultant RF plate current, $I_{p s}$ also lags its applied $R F$ plate voltage by 90°; thus, tube $V-1$ is made to appear as a virtual or an apparent inductive reactance, $L_{a}=\frac{R C}{G_{m}}$ Henries, in parallel with the oscillator tank circuit.

The magnitude of the 90° lagging RF plate current flowing through $V-1$ depends on the mutual conductance, G_{m}, of the tube. Reducing the negative control grid bias increases the tube G_{m} and allows the tube to draw a larger 90° lagging RF plate current, $I_{p,}$ reducing the inductive reactive effect of $V-I$; hence, the apparent inductive reactance of the control tube varies inversely with the tube's plate current, Ipo If an audio voltage was impressed on the control grid of $V-1$ through a suito able RF choke, to prevent losing the RF grid excitation voltage, $\mathrm{E}_{\mathrm{c}, \mathrm{g}}$ the
reactance of V ll could be made to vary at an audio rate producing frequency modulation of the oscillator's output.

By interchanging R and C in the $R C$ phasesplitter network and making the resistance of R small compared with the reactance of $C\left(R \leqq X_{C}\right)$ at the operating frequency, the reactance tube $V \sim 1$ can be made to look like an apparent capacity (I_{p} leads E_{p} by 90° and C_{a} ($G_{m} \mathrm{RC}$ Farads).

It is generally preferable that the RF plate current I_{p} lead or lag the impressed RF plate voltage E_{p} by an angle of as nearly 90° as possible. If I_{p} and E_{p} are displaced by some angle appreciably less than 90 , a resistive component of impedance "R" will result ($Z=$ " R " $£ j \mathrm{X}$) which will appear in shunt with the tuned circuit. The effect of the resism tive term "R" across the tuned circuit will be such that it will prom duce amplitude modulation as well as frequency modulation of the oscillator output.

The residual amount of reactance provided by the tube to the oscillator tuned circuit, in the absence of modulation, is governed by the operating grid bias, which allows the zero center or resting frequency of the oscillator to be adjusted by varying the grid bias on the reactance tube. The reactance tube is usually biased so that its operating point will appear at the center of the tube's transconductance characteristic, so that symmetrical oscillator frequency deviation will be effected for equal positive and negative excursions of the control tube's modulating grid bias voltage.

ISOLATING AMPLIFIER V-2201, SHAFER V-2202B AND

 10 KC BLOCKING OSCILLATOR V-22O2ASIMPLIFIED SCHEMATIC AND DETAILED FUNCTIONING OF CIRCUIT

1. ISOLATING AMPLIFIER V-2201, 5654 (6AK5). - This stage is essentially a Class A RF Buffer Amplifier whose main function is to amplify and isolate the 100 kc sync signal applied to the Blocking Oscillator V-2202A. This stage has a voltage gain of approximately 15 X develop

- ing 100 rms volts across plate load resistor $\mathrm{R}-2203$. The cathode resistor $\mathrm{R}-2206$ (270 ohms) is left un-bypassed to provide a slight amount of degeneration, limiting the gain, and improving the stability of the amplifier. Test Point TP-2201 is provided for testing input lc (approx. 7.4 rms volts). The 100 kc synchronizing signal is fed to the Blocking Oscillator thru de blocking capacitor C-2203 and resistor R-2205. Disregarding the negligible reactance afforded by capacitor $\mathrm{C}-2204$, resistor R-2205 in conjunction with resistor $\mathrm{R}-2207$ forms a voltage divider of $10: 1$ ratio, which compensates for the undesired voltage gain of the buffer and permits a 10 rms volt sync signal to be injected on the control grid of Blocking Oscillator V-2202A. Resistor R-2205 also provides the necessary degree of desired isolation between the two stages.

2. BLOCKING OSCILLATOR V-2202A, $1 / 25814$ (12AU7). -- This stage is a synchronized blocking oscillator, which functions as a frequency division (scale of 10) circuit. A sinusoidal RF 100 kc synchronizm ing carrier of approximately 10 rms volts is injected into the grid circuit of the blocking oscillator at terminal 1 of transformer T-2201. The blocking oscillator circuit is a conventional free running relaxation oscillator whose output consists of RF pulses occurring at a repetition rate of 10 kc per second.
2.1 Following is a detailed explanation of the single swing type of blocking oscillator V-2202A. This circuit can be likened to a conventional grid-plate tickler feedback type of oscillator of the self-squeging type. Assuming plate voltage is applied to V-2202A, the tube starts to conduct, drawing plate current thru transformer T-2201, inducing a positive going grid voltage across winding l-2 of T-2201, which causes the plate current to further increase to the point of saturation. At this point the varying plate current suddenly becomes a steady value and no longer induces a positive voltage across 1-2 of T-2201; thus decreasing the plate current thru the primary winding of this transformer and inducing a negative going voltage at the grid of V-2202A. This condition occurs very rapidly, driving the grid far below the cut-off value and completely cutting off the plate current of this tube. The grid voltage wave form is show in Figure 2b. During the

Note No. 15-2
Page 2.

above cycle, it will be noted that the grid of $\mathrm{V}-2202 \mathrm{~A}$ is driven positive with respect to the cathode producing grid current thru grid resistor R-2207. The self-rectified grid voltage produced as the result of the $I R$ drop across this resistor charges capacitor $\mathrm{C}-2204$ in the direction shown on Figure $I_{\text {, }}$ As a result of the combined charging effects of the negative going induced voltage across winding $1-2$ of $\mathrm{T}-$ 2201 and the self-rectified negative grid voltage, capacitor $\mathrm{C}-2204$ will hold its charge long after the point where plate current cut-off occurs. The charge on C-2204 will leak off or discharge in the direction shown on Figure 1 thru grid resistor R-2207. This discharge period will be governed by the approximate $R C$ recovery time of $\mathrm{R}-2207$ and $\mathrm{C}-2204$. Tube V 2202A will remain in a plate current cut-off condition until such time as the negative grid voltage decays to the critical value which will again allow the tube to conduct and generate another plate voltage pulse. The blocking oscillator will thus pulsate at a rate (10 kc per second) essentially determined by the LCR recovery time of $\mathrm{R}-2207, \mathrm{C}-2204$, the inductance of winding 1-2 of T-2201 and the cut-off point of the tube's plate characteristic determined by cathode bias resism tor R-2210. Variable cathode resistor R-2210 (1500 ohms) is of relatively low value and varying this resistor will prom duce a fine or vernier control of the output pulse rate of V-2202A. This resistor is purposely left un-bypassed to provide a slight amount of current degeneration to improve the stability of the oscillator and also to render the stage impervious to minor circuit changes such as tube aging, variation, etc. To further improve the stability of the amplifier, the tube's plate supply is derived from a voltageregulated source. It should be noted that a blocking oscillator is inherently an unstable oscillator and as such it is quite responsive to external influences such as a trigger or synchronizing voltage.
2.2 Referring to Figures 2 a and 2 b it can be readily seen that the grid recovery time and the cut-off point are so chosen that only every loth cycle from the isolating buffer amplifier V 2201 will arrive at the proper instant to trigger the grid of the blocking oscillator. As a result the pulse output of the blocking oscillator occurs at a rate of exactly $1 / 10$ th that of the master crystal oscillator frequency of 100 kc . In other words, the output of the blocking oscillator is locked to the master frequency source in order to critically control its output pulse rate. In order to provide good lock-in or synchronization, the free-running output of the blocking oscillator should occur at a frequency slightly lower than 10 kc .

Note No. 15-2
Page 3.

If it is adjusted to a frequency higher than 10 kc (grid recovery time is too short), the individual cycles of the freerunning blocking oscillator will occur too close together. Considering one individual cycle of sync voltage with respect to one cycle of the free-running pulse oscillator, it can be seen that the free-running pulse (pulse repetition rate too high; above 10 kc) will precede or occur ahead of the sync cycle; thus, in effect, getting in the way of the sync voltage, This would prevent the sync voltage from accomplishing its intended function.
3. PULSE SHAPER \& LIMITER V-2202B, $1 / 25814$ (12AU7). - This stage which receives the 10 kc ac pulse output of $\mathrm{V}-2202 \mathrm{~A}$ serves to clip and shape the pulse wave form into a positive going de pulse, 4.5 V peak voltage approximately I microsecond wide.
3.1 The alternating pulse output (100V rms) of V-2202A (Figure 1) is applied to the grid of V-2202B, pulse limiter and shaper. It will be noticed that resistor $\mathrm{R}-2211$ (270 megohms) appears in series with the grid of this tube. The value of this resistor is large compared to the conducting grid-cathode resistance of the tube, thus eliminating the positive half pulses to approximately ground or zero potential. Grid current is drawn throughout the entire positive half cycle thru R-2211 and the conducting grid-cathode resistance $R_{\text {gk }}$ of the tube is small compared to the resistance of R-2211. Since the full input voltage must appear as the sum of the drops across R 2211 and $R_{g k}$, the larger the R is with respect to $R_{g k}$, the nearer the voltage on the grid is limited to that of the cathode, or ground in this particular case.
3.2 The grid of $V-2202 B$ is driven very rapidly to plate current cut-off, producing a sharp negative pulse in the plate circuit, across winding 2-3 of T-2202. Due to the action of transformer $T-2202$, this pulse appears as an ac wave form pulse across the secondary winding l-4。 Capacitor $\mathrm{C}-2206-\mathrm{c}$ (. 25 mf) provides a low reactance path for the pulse return circuit. A de-coupling network consisting of $\mathrm{R}-2213$ and C-2202B provides a simple decoupling filter to prevent this pulse from appearing on the $f B$ power supply bus. The ac wave form across the secondary of transformer T-2202 is applied to shunt diode CR-2201 (IN38 crystal diode). This diode having extremely low distributed capacity imposes very low shunt capacitive loading on the output pulse. This diode will conduct on the negative excursions of the ac pulse wave form, thus shorting out the negative half of the wave form. The resultant output at this point is a 1 microsecond positive going pulse, approximately 4.5 V rms in amplitude, which occurs at a rate equal to $1 / 10$ th the frequency of the 100 kc crystal oscillator or at an accurately controlled rate of $10,000,000$ or exactly 10 kc pulses per second.

THYRATRONS - - GENERAL THEORY

Thyratrons are hot cathode gas discharge tubes containing a grid. If the tube is non-conducting, and the grid sufficientiy negative, it will. remain non-conducting. As the grid becomes less negative with respect to the cathode, a point is reached at which the tube "fires" and begins to conduct. When the tube is conducting, it will carry a heavy current between plate and cathode with a small voltage between them. While the tube is conducting, the grid has no control. Making the grid negative will not cut off the current. However, if for any reason the voltage between cathode and plate drops below a critical value, the tube becomes non-conducting, and the grid takes control again.

Characteristics of 2 D 21
(Commercial equivalent of 5727)

Shield Grid 0 Volts
Anode Volts
200
400
600
$E_{f}=6.3$ Volts
Grid voltage at which conduction starts

$$
-2.5
$$

$$
-3.2
$$

-3.7

When the anode voltage is less than 25 volts, a grid voltage of -2 volts will cut off the anode current.

In practical equipments the two common methods of reducing the voltage across the tube are to use an R-C combination in the plate - or externally disconnect the voltage as by a switch. There are examples of both in the URT.

The saw tooth horizontal sweep circuit in the oscilloscope is an $\mathrm{R}-\mathrm{C}$ oscillator of the relaxation type. There is a good description of it on pages 2-154 and 2-155 of Section 2, Theory of Operation. The circuit diagrami is Figure 2-112 in the Section 2 Illustrations.

In the Intermediate Power Amplifier and the Power Amplifier, there are practically identical Thyratron circuits. The description is to be found in Theory Page 2-175 (6) and (8). The circuit diagrams are to be found in Section 2, Illustrations, Figures $2-112$ and $2-117$. It should be noted that the 300 V plate supply is through the contacts of a relay. Further cathode bias is provided by the drop of the screen bias divider current through the cathode resistor. Thus, while the tube is nonconducting, the cathode is about 10 V positive. As the grid return is to ground, this means about a l0-volt negative bias.

A positive pulse from the multivibrator triggers the thyratron which operates the tuning motor control relay. One pair of contacts on this relay opens the thyratron plate supply relay. This, of course, removes plate voltage from the thyratron.

SUBJECT:	Special Circuit Operation
OBJECTIVE:	To provide work experience with the circuits covered during the lecture of Lesson Sheet No. 15,
EQUIPMENT	To be determined by the instructor based on material covered in Lesson Sheet No. 15.
RERUIRED:	
PROCEDURE:	To be determined by the instructor based on material covered in Lesson Sheet No. 15.
CONCLUSION:	At end of shop exercise, students will return shop to proper status for the next class.

Time Allotted: - 8 Hours
SUBJECT:
OBJECTIVE:
EQUIPMENT
REQUIRED:

PROCEDURE:

CONCLUSION:

System Control Circuits
To provide the student with additional work experience in the manipulation of controls and in the recognition and correction of faults in the AN/URT-2, -3 , and/or -4 Radio Transmitting Set control circuits.

1. One completely installed $\mathrm{AN} / \mathrm{URT}-2,-3$, or -4 Radio Transmitting Set。
2. One set of test cables for same.
3. All standard and special test equipment.
4. All standard and special tools.
5. The students will be divided into groups by the in structor.
6. One group will be assigned to place faults in the CONTROL CIRCUITS of the transmitter.
7. After 2, above, is completed, the second group of students will be assigned to locate the faults. No corrective maintenance will be performed until such time as the instructor has been satisfied that the fault was located by use of proper methods as stated in the Instruction Book. If only two groups are formed, the faults will be corrected by the second group. If three groups are formed, the third group will correct the faults found by group number 2 and will insert additional faults to be found by group number $I_{\text {. }}$
8. In 3, above, if only two groups have been formed, the second group will correct the faults inserted by the first group and will insert faults to be found by the first group.
9. The variations of the procedure indicated above will be continued throughout the time allotted with the exception that the instructor may insert faults at any time and assign a student or group of students to find and correct such faults.

At the end of the exercise, the students will turn in all tools and test equipment and clear the shop for the next class.

SUBJECT:

OBJECTIVE: To provide work experience in the RF portion of the Transmitter Group, and in the associated power and control circuits.

EQUIPMENT
RERUIRED:

PROCEDURE:

CONCLUSION: At the end of the exercise, the students will turn in all. tools and test equipment and clear the shop for the next class.

SUBJECT:	LLRM and HLRM Preventive Maintenance, Corrective Maintenance and Checkout
OBJECTIVE:	To provide work experience in the modulator portions of the Transmitter Group, and in the associated power and control circuits.
EQUIPMENTREQUIRED:	1. One operating AN/URT-2, -3 , or -4 Radio Transmitting Set.
	2. One set of test cables for same.
	3. All standard and special test equipment.
	4. All standard and special tools.
PROCEDURE:	1. The students will be divided into groups by the instructor should this seem necessary.
	2. The class or a group of students will be assigned to perform the following:
	(a) Preventive Maintenance
	(b) Insertion of faults
	(c) Corrective Maintenance
	(d) Preparation of Failure Reports
	(e) Checkout of the equipment
CONCLUSION:	At the end of the exercise, the students will turn in all tools and test equipment and clear the shop for the next class.

Time Allotted: - 8 Hours

SUBJECT: ATE Preventive Maintenance, Corrective Maintenance, and Checkout

OBJECTIVE: To provide work experience in the ATE with and without RF。

EQUIPMENT REGUIRED:

PROCEDURE: \quad I. The students will be divided into groups by the instructor should this seem necessary.
2. The class or a group of students will be assigned to perform the following:
(a) Preventive Maintenance
(b) Insertion of faults
(c) Corrective Maintenance
(d) Preparation of Failure Reports
(e) Checkout of the equipment

CONCLUSION: At the end of the exercise, the students will turn in all tools and test equipment and clear the shop for the next class.

(Roris Draving int 81.307 .25
(a) Primaxy power 210 volts, 60 eps on 115 or 230 voltes DC is fed to the tramanittiag set through leado 17 and 28 of $\mathbb{Z}-602$.
(b) Leads 27 and 18 counect to contacts 7,8 , and 5,6 of plug P-3001. (Input plug of Iov volitage powex supply).
(c) Leade from 7, 8 and 5,6 of P-3001 connect to emergency switch DD $8-3001$ in LITPS which must be closed to extend the electrical patil
(d) Switch S-3002 cornects celbinet space beaters MR-701, 702, 703 and 704 to power ilnes through fuses P-3001 and F-3002. Inilcetor 2anp I-3003 21ghts when owitch S-3002 is cloced.
(e) Shunt heater elements $H R-701,702$ and shunt elenemts $H R-703$, and 704 eay be connected either in paraliel for 110 voli oporation or irs sorlos foz 230 volt operation by 15nkes 1,2 and 3,4 ($\mathrm{FL}(\mathrm{s}, 2-141$)
(1) For 60 eps operstion, the line is extencied through fusee Fw 3005 anc P-3006 by 3 inke 23,24 and 7,6 , also 1ioke 20,21 end 10,9 . For 4,000 ope operetion the 1 ine 13 extended by 11 ntes 23,22 and 11 inks 20,29 , and the rectifled DC through selenium rectiffer OR-3002 is extended by Links 5,6 and $11 n k s$ 3,9.
(g) Power is axtended from Link coatact 9 through the interlock circuits if all the chassis in series to voltage dropping resistor R-3003. Lor 230 volt operetion, power is extended through $14 \mathrm{nk} 14,12$ or for 110 volt operation through 21 nk 13,12 which shorks vol tage droppins resistor Z -3003.
(h) Fomer is oztended from 11 nk contact 12 to curront litaitiag rooistor $\mathrm{B}-3004$ end olosed coatacta L3, T3 of Wastsr Control roley $\mathbb{\&} 3001$ to relay cott of K-3002
(1) Pomer le extended from coil of $\mathrm{K}-3001$ to axin pomet get ite $\mathrm{S}-3004$. The other elde of $\$-3004$ conracts to othas power lins sxtended fros
 $\mathrm{S}-3004$ completes the circuity and closes manter oantrol reiay $\mathrm{k}-300 \mathrm{k}$, Itghting 5aeter control lamp 1-3002. Rolay $\mathrm{K}-3001$ ruonlas onergisod through its own coatacte $12, T 2$ which shunt zwitch $\mathrm{S}-300 \mathrm{4}$. Resistor
 yolt oporstion and $2 s$ shorted by LSak 10,27 fox 110 roith aperation
(1) Tailure of sny sootion of the interlock ciroust to acks properly will prevent the aquipment from baing energised
(k) Power is turned off by stop switheh SE $5-3004$, which ahorte coil of Mater Control relay E-3001, ceusting relay to open
(1) Then Local-lienots switch S-il09 in LLRu ia placed io rewote position, power is, oxtended through pin 3 of plug p-3004, line 36, pin 4 of ${ }^{2} 1108$, across contacts 6 of $S-1109$ pin 5 of $\mathrm{P}-1108$, $21 n$ en
 box. The other sido of ressoto etart seitch axtende power to tereinal 2 of $\mathrm{B}-601$, eaross contacts B of $8-1109$, pln 3 of $p-1308$, line 35 of pin \& of $\mathrm{P}=300 \mathrm{~h}$ and leade to one side of Nister Control relay $\mathrm{E}-3002$. This romote start smîch is therefore io parallel vith etart switch EE $\mathrm{S}-3004$, and oithe- may be used to stert tranamitter. Connedted to terminal 2 of E 601 is also one side of femote Stop spitch, the other side of rhich connects to torminal. 3 of E-602, 1tne 3 , pin 1 of $p-3003$ and isads to other side of Master Contrai relay K-3001: ifs remote switch is therefore in parallel with Stop switca $\mathrm{EE} 5-3004$ and sither may bo kaod to stop transmitter.
(a) Whan 115 or 230 woits $D C$ is used as a primary source of powar, pressing stert button energises relay $\mathrm{K}-3001$ sxtending power from one side of 1100 through contacts $22, \% 2$ of relay $\mathbb{R}-3001$ to termatnal \& of 1 300\% through liae 35 to tarminal 19 of 8.602 . An aukiztary converter totor controller is connected between terminsis 29 and 20 of 5-602. Froie terninal 20 of $\mathrm{F}-602$ the power is extented through line \% and contacts Thy, id of reley K-3001 to the other power 1 inc
(w) The 110 volts AC from Auriliary Converter is connootad to tempinal 22 and 21 of 8-602, and is extended through coutacts 1,2 a ad 3,4 of piug p-3001 to 1ints 27,26 and 11 nks $30,29$.
(o) When the prinary aource of power is 110 AC the power is exteoded by turning 2inics mentioned in (n) to positions 25,26 , and 28,29
(p) Then Hater Contarol relay $\overline{\mathrm{K}}-3001$ is enexysued, poser is extended through fuses $E-3007$ and $E-3006$ contacto $I x, T 1$, and $L 5, T 5$ of relay $\mathrm{X}-3001$, through fuse $\mathrm{F}+3009$ to the primaxy of ths Lav Voitage Power Supply twenaformer I-3001

WOTE: - In the AN/URT-2, a furper connacta teral nala 46 and 45 of E-604 aince the High Voltage Fower Supply and High Lavel. Pactio Uodulator are net in the reck
(a) 110 volt $A C$ poser supplied to low Volkege Pewes Sumply eaergizea :
(I) Tro n, volt supniles (wis 2.126)
(2) 220 polts (Fig 2-129)
(3) $/ 250$ volts (ffe 2-128)
(4) $/ 300$ polte (Pig $2-127$)
(b) The $-220, / 250$, and $/ 300$ volta are not available until velay $K-3010$ operates.
(c) Time Delay relay $K-3003$ starts as acon as -24 voits is available, and artar a time delay of 30 secoucis closes contacts IC , IA of K-3003, lighting time Delay lasp I-3002, which indicates that power from Low Toltage Puwer Supply is aveliable.
(d) Than relay $\mathrm{K}-3003$ operatos, closing contacte $26-2 \mathrm{~h}, 24$ volts is extended to coll of relay K-3010 energising asise. Relay K-3010 contacts 22 3R clone, grounding the center tap of the 300 and 250 volts winding on power transformer $T-3001$, extending / 300 and f $/ 250$ volts to various stages vsing same, and lighting neon lamps I-3005 and I-3004. Contacts $2 \mathrm{~L},-3 \mathrm{~L}$ al.so closes, grounding the certer tap of -220 volt mindrag of power transformer T-3001, extending -220 volts to stages using asme, and lighting neon $1 s \mathrm{mp} X-3005$.
3.
(a) The 120 volt AC powes is connsoted throuigh pins 4,5 and pins 2,3 of plug P-3003 to 11 nos 29 and 30 , which supply power through pine 6 and 7 of plug P-1109 to:
(i) Osa111oscope through fuse F-1003
(2) The -12 volt power supply through fuse tr-1002
(3) The f(250 volt regulated supply through fuse $\sqrt{2}-2001$
(4) The Low Level Blodulstor filkment tranaformer through fuse F-1002
(b) The 110 volts AC 13 extended through ptns 4 and 5 of plug P-2925 to Frequency Generator filament and 1.50 volt Lodex motor supply.
(c) The 120 volts AC is extended through pens 1 tind 2 of pluy P-501 to the Pifctituan Volcage Pomer Su, ply traceformurs hitrough fises [. $501,5-502$, and $5-503$.
 transforwer for the Fadio Frequancy Ampliffer and blonor wotoz in THFA throggh fuBo E-1301.
(e) Then $-2 / 3$ VDC is svalisble from Low Voltage Poter Supply (istap 2a) it energisen Blawer relsy $\mathbb{I}-3049$
(b) Energiaing relay K-3009 elos6e 4 6a contacts 31, 21 and contacts $3 R-2 R$, exteading 1.10 volte $A C$ to the blawer motors in the base incuating.

(c) Switoh $5-1601$ is the "Booster" transier awitah, which selects which of the transmitter stacks Will be boostad from 300 vetis to 500 watts. Poeltion P_{p} as shown on drawing, is the rieght stack; position L, the leit stack, and the center posithon is booster off. The booster will be considered as drawng in the right position (R).
(d) The 24 volts is outended to contact \mathbb{R} of $\mathrm{S}-1601$, through normally Closed comtacte 2L, 3L of "Overload" reiay K-1602 (HLRM). The 24 volts is axtended through normelly closed coataots of switch $\mathrm{S}-1113$. whioh will open the circuit only whon switch S-1102 2 s being turned. The 24 volte is extanded through normally closed contscts. $2 \mathrm{R}_{2}$, 解 of "Overlosd" roley $\mathbb{K}-1303$ (PA), to the tine delay bus energising xem Ley K-1368 and olosing contacts $2 \mathrm{~L}, 3 \mathrm{~L}$ of $\mathrm{K}-1.368$.
(a) When frequency selootion in the Mro is started, 26 volts is ertended from $\sqrt{-613}$ teruinal 1 to tembinal $9 \mathrm{~J}-614$ (soe Fig. 2-53y) relay $x-2929$ contacte 2,1). The $2 L_{6}$ volits is further extended through comtaces $3 R, 4 \pi$ of "Call for Bandswitch" relay $\mathrm{K}-1359$, through switch S-1361 contact 1 to rators, to coil of K-1359. From K-1359 coil through contacts $58-6 \AA$ of relay $\mathrm{K}-1360$, contacta 3 Lag $4 \mathrm{l}_{0}$ of relay $\mathrm{N}-1.361$, contacts $5 \mathrm{R}-6 \mathrm{R}$ of relay $\mathrm{K}-1362$, contncts $5 \mathrm{R}-6 \mathrm{R}$ of relay $\mathrm{K}-1363$ to ground, onergiefng $\mathrm{K}-2359$.
(b) When K-1359 eloses 24 volts is extended through contacts 9L, 10 L of relay K-1359, through contact i to rotor of awitch $\mathrm{S}=1361$ eection f to coil of "Interlock Brobk" ralay K=3007, onergizing same and opening its contacts 1R-2R.
(c) The 24 valts is extonded to $K-1.359$ coil. through "AX" oontracts $2 R-2 R$ of $\mathrm{E}-1359$ and the nornally closes contacts $3 R-4 R$ opan.
(a) Whan frequeney seieotion (by dielz) is completed, 24 volte is switched from texminal 9 of $3-6,13$ to terminel 10 of J-G14 (Figure $2-53 \mathrm{~g}$ contacte 2,3 of $\mathrm{Te} 2 \mathrm{sy} \mathrm{x}-2919$). The 26 vol to 1 s extende d therough contacta $7 \mathrm{R}, \mathrm{BR}$ of relwy $\mathrm{K}=1.359$ lighting bandswitch str 5 t lamp I-1302 and anergiaing siow operate. "Bandewiteb Motor Delay" relay $\mathrm{K}=1308$. This 24 rolt isne is extended to 10 megmoyole stiap strittoh $\mathrm{S}-2987$, Suction $\mathrm{g}_{\text {, the }} 1.00 \mathrm{ko}$ thop switch $\mathrm{S}-2326$, refer D , the 1 aogacycle etop suiteh $S-2988$, wafor 14 , Aftor pasulag throngh these awitchos the 24 volte 18 retcirned to $S-1378$ on one of $s 1 x$ leeds which matches the PF band to which the PRO is ounced
(b) 1.00

Band
Ler, d See Pig. 2-62 718. 2-110

1
2
3
4
5
6
7
2
3
3
5
6
Contrat Froat Swittch S -1378
g。

 K-1307, 1ighting band ewitch motor lamp $1-1321$; 4ad enesgizing

 I of switch $8 \cdot 1601$, and normally closed ounthaty tis a of 20lay - $x-1502$.
(b) The Bandamitwh motor B-1.302 drives bamhwition: 3. 307 हna $S=1302$, the band dial and switches $S-1378$, arki $5 \cdot-27$? sid B. 380.
\%.
 band as the bend dial and switohes $5-276 \quad 3083$ and S-2987 set up up in the RFO, the 24 volk is extantac in MBandainh Completed" rolay $K=1307$
(b) Fnergizing $\mathrm{K}-1307$ opens eontacts 21,21 of sansp wiop hing band-
 Completadr lamp I-7302.
(c) IR tha Bandawitch in the RRA is on tive cievtiob ba00 mon Irequeney

 relay $E=1307$ would be energized end aporath autov we 37.0 operate
 Thus, unnecessery runatag of bendstitot sysush 13 powvonted.
 tbrough rotor to 1 of auitoh $S-1361$ sucitak hy h itch h contacts

 malay K .2 .361 , through sornumlly clac... Folay $\mathrm{x}-1360_{2}$ through wotar to vontact 1 0 Ct

(b) Ints snergizes the tazaing motox anc he T2A And P\& etages to tho bigh frequenoy 4xcuraion at which potat they are ahut ofr by 71tches S-1372 ana S-1374

11
 volts from the time delay buy throuel 28y
 3R, ith of relay $\$-1360$, oontact 1 t. to evtiteb. S-1361 anscgizing "Coil sor IPA Tuni groundied through contacts $3 L_{g} 42$ of whu 58.62 ©1 Telay $\mathrm{S}-1362$; consacts brip tr of 5

 6 reatstort Tha tive who Fummeted by consacts 7, 9 Bnd 1.1 of svitoh

 and 3. $(21 g \quad 26+2) \quad 2$ gse $2=203\}$
 tube $7=1325$

15.

 lamp $1=1304$
 mally olosed contacts $3 R_{g}\langle k$ of reiay $K-1361$ and bontaot 1 to rotor

 and contacts $5 R, 6 k$ of $5018 y ~ K=1303$
 contlmes to be smert issed vy $2 f$ volts axtended fhrough ocatacts $2 \mathrm{~L}, 3 \mathrm{~L}$ of relay $\mathrm{K}=1.368$ (which ologed when time delay son out) and AX contacts $1 R_{z}$ 观 of $K-236$

 to the "Call for "FA Thansigg *
(a) 24 volts is extemded from tho motom bus through a0utacts 91. 104 of

 motor 3 2.303, qainsine it to rotata

 contact 2f of xelay $K-1355$ wac montact if af welay $K-3.352$.

8．	 号具
i．	 LS 日市，A
$\because!$	\qquad
． 3	$\therefore 35$ ．＊ix co urated switch

a

23


```
artended from interiook cireuit rbrough uolzs
```



```
210 or 220 - yolt 11 ne
```



```
    tacts 3R, \&R apea
```



```
after transmitter in akut of provided:
(1.) The wadn powor has not been removed
    Emergoncy swit the is DD S-3001 hass trolhumat openced
    (3) No Intorlock has been brokem
```



```
    Interleok break relay K-300? (See!
Enargizing relsy R-3006 eloses coniants + Th at zalsy fo 3006 and
they romein in that pooktion es long an ionditiors lintod (250;
are met.
```



```
With switek Sa 3005 in "operate" poaitiun, :h volits it as ondac.
```



```
to grounia anens 20248 रulay \(\mathrm{F}=2362\)
```


 11 giating nacs 2.amp $2=503$.

 rundiog.
35.

 reley $\mathrm{K}=1605_{8}$ energhalng botho

Z.

 of revay kix 2365 . Lightiag eincm 2000 $2 \times \mathrm{mes}$ ar tomioc through mosnmlly stogsa coon 013 ही

 the morreal elreult path oxtomatug

 posi 62on 2.
 positfon ene sxtmen 24 Tolts direat Irom $2 L$, voit supply thxougit 1ta unn contuets and onntact 2 to rotox of $S=1362$ sectaion it to the "Call For Bunammikon swlay $\mathrm{K}=1359$ 8 anergizina sema
 soction is is interrupted at this point with $\mathrm{S}=1361$ in ponition 2_{s} so the TPA tunding motor 2.230% and PS wanting motor of 1303 axe xot xan up to tha ing gh frequency ersd of the baud befote tumime atarta

 not bs enprgized.
 K=1359'to drop out 24 wolts is mon axtmaded through contac bat

 tended through ite cin sontacts end oontaots z to rotor of switwh
 ลสมมะ
 irequency end befor autcuetlc hatng begtas
 Lawp $2=1304$ 11ghts)

 not be enexigizectu

30
(a) Operation gelsctor switch A S-1363. I6 pleced in mamak poeition 3.
(b) Bandswitch gection selector smitch 0 s. 1362 is pieoge $2 n n^{50}$ porstion AB in esml-autometio to energize Inwl359.
(c) The 24 volts whieh is extended thmoush comtaots 31,305 of $K=1359$ is transferwet to contact 3 of $5-2362$ section M_{3} bypassing bande
 tends 2/s volta to "Bendewitch Increasg" awitch B 3a1.358. Benad awitch motor B-2302 m112 be enargited wher S-1355 is fogged to tha inazease or closed position.
(d) Bandswitch coiplete 11 ght 101302 will not 11 ght 80 ocmanat bemeio switch positton or channel mut be noted on dia?..

20
 poaition as in semi-mutomatic to enexgi.as Kal360
(b) The TPB Tusing motor is. 3.301 v121 not run or bo. contrailed by the IPs. sense eiroult becsuee 26 volts to thotor bus is intemmptea by switeh A $S=1361$ seotion Oe vislch is in position 3 , and 2% volts to sense elroutt relays $\mathrm{K}-1.350$ mad $\mathrm{K}-3354 \mathrm{de}$ Interrupted by switcin A $\$=1.363$ 38ation J_{g} which is in posmelcm 3.
(c) 24 roits Le extended srom rotor to vontact 3 of $5 w 2$ tah $A \alpha-S=1.361$
 is extended to elther of the two f1e2 ds of z thentag motot $8=1301$ by clositag switoh D So1359 Geanooperated switcoi A-1372 removes

 (Tuxa off K, Sol 363).
(a) IK tumang sootion selector ss iton $G S-1.364$ is pleced in ${ }^{46} \mathrm{Cm}^{5}$ posielon as is senf adtometwu to energina K 1360 e
(b) Whe PA tuntng motor B-1303 whin not run or be controlied by PA sonse circuit becelise 24 volts to woros bus 18 interirpied by switch is $\$-1361$ seati.un 9_{9} which $1 s$ in position 3 , ano 24 vo2is to sonse
 sectivon ξ, yatch is ia position 3

(a) Followiaf the operation of onergiaiag the tso0 volt supply by xelays K -502 or $\mathrm{K}-501$, the plate current daraw by the IPA amplifier tabe enexejzes relay $K \rightarrow 1108$, (a condithor, that oxista when the carmien is actually ors
 $\mathrm{R}=1243$ tw got1 of reley $\mathrm{K} \sim 1309$ fi500 volt piste supply voltage for
 coatacte 5\{-6t, oxtending $\$ 900$ yolts frow the 300 valt power sunply (Line 27) to the gereen gride of tha LLR power amplifier tubes,

(a) Wben $k=1108$ is srexginod -27 volts ts extendec through contactes
 TCsxilex on " 1 Rmy $2=1310$
(b) Contacts ? $5=3 \mathrm{H}$. Itsable the Tusefver

(b) Controus (ax-2h of ralay K-216f sxtend -12 volta to co11 of "Press to Tadw rexay K-2102 Kw1202. w12. be amergised when press to ealy button an handset 2 se depresoaci. (Fig $-2=87$)
 s.on tagt key to Cif key ox FSX keytng (FAg 2=7?) (Text 2-126)

 supply of Power smplifis\% quae $4=1.30 \%$ 16 ensegized when exceesive

 standby conclititon.
 and Lighting indicekor 2emp 1o-k31?

(a) The wode of operation is selacted by Service Selector switch Q S-I 102
(b) Switoh SwiO2 section B (Whan on print in position 6) extends 26 volts through its rotor and eontact 6 to colls of "Audio unshoret relay K-1103. (Ktg 2.68), and "Low Lavel Hodulator TrensCormer Unshort11 relay K.1106, (Fig, 2.74) These colle are grounded through contact 5 R-作 of relay $K-1101$ eno mill he energized when these contacts close, (F2. 3 , 87)
(c) The 24 volts is further estehted to cotl of relay K. 503 , energizing same. Relay $K-503$ contacts 14,32 closs and decrease the output.of the hedrum. Yoltage power Sumty from 1300 volts to f $h 050$ volts.
(d) The 24 volts is further extended throngh section Q of switch $\mathrm{S}-1602$, (for 500 watt operation), to wolls of "Screen Short" relay $K-1601$ (in high level modulator) and "2manstomer chort" relay K $=1603$ (in high level modulator). These coils are grounded through section it of S-1601 and contects $5 \mathrm{~K}-\mathrm{Ak}$ of reley $\mathbb{K} .1101$ and will be energized when these contscts are closed. It is. firther extended to coil of relay K-1501, energizing K $=1501$
(e) Relay $k-1501$ contacts $9,620,2,11,4$ close and decrease the output of the High Voltage Power Supply from $f 3000$ volts to $\$ 24.00$ volts (Fig. 2-134)
(i) The 24 voits is extended through cantacts $2 k .31$ of relay K-1101 to coil of relay K-1112. Contects 31.45 of $K-1111$ open, and allow the aarrier to go on the atr when reluy $K 2101$ is energized by push to talk button fn handset. (R15 ? 89) (rest 2-135) Felay K -1111 is
a inlow release type and its contcots $4 R-3 R$ remain open for 0,2 seconds after push to balk button is released, keeping the carnier on the air for that leagth of time
(g) Relay $\mathrm{K}=160 \mathrm{I}$ (energized in step $\mathrm{a}^{\text {; }}$ contacts $1 \mathrm{~L}, 2 \mathrm{~L}$ open. removing ground from soreens of high level radio modulator tubes. Contacts 21. 37. close, extending $\$ 350$ volts to screens to high level redio nodulator tubes through ootl of "Ovorlose" rolay K-1602, Ifenting f350 volt screen lamp I 1602 .

[^0]: (Note:- The material presented in this suggested lecture is a condensation of certain portions of Section 2, "Theory of Operation for Antenna Tuning Equipment," in the Instruction Book. This material supplements, but in no way is intended to replace any of, the material in the Instruction Book).

