## COMFIDENTIAL

## APRIL 1947


Design Considerations in Cathode Ray Tubes
High-Speed Transmissions on VLF ..... 14
The Magic Tee. ..... 16
Multi-Channel Two-Tone Radio Telegraph ..... 20
OCT Frequency-Sbift Momior ..... 24

DISTRIBUTION: BUSHIPS ELECTRON is sent to all activities concerned with the installation, operation maintenance, and supply of electronic equipment. The quan tity provided any activity is intended to permit convenient distribution-it is no
intended to supply each reader with a personal copy. To this end, it is urged that intended to supply each reader wuickly. They may then be flled in a convenient location whare interested personnel can read them more carefully. If the quantity supplie is not correct (either too few or too many) please advise us promptly.
CONTRIBUTIONS: Cuntrib
material should be addressed to

$$
\begin{aligned}
& \text { The Editor. BuShips ELECTRON } \\
& \text { Bureau of Ships (Code 993-b) } \\
& \text { Nevy Department } \\
& \text { Washington 25, D. C. }
\end{aligned}
$$

and forwarded via the commanding officer. Whenever possible articles should be
accompanied by appropriate sketches, diagrams, or photographs (preferably negaancompa
arcives).
CONFIDENTIAL: BUSHIPS ELECTron has been classified confidential in orde that information on all types of equipment may be included. It should be shown
only to concerned personnel as provided in the U.S. Navy Regulations. Don't forge only to concerned personnel as p
this includes enlisted personnel!
BuSHips ELECTron contains information affecting the national defense of the Unite
States within the meaning of the Espionage Act (U.S.C. $50 ; 31,32$ ) as amended.
BUREAU OF SHIPS

. $\qquad$
.


Transmitter-Receiver-Antenna Assembly of the CXIG 1-centimeter surfacesearch radar mounted for testing purposes at the Naval Research Laborator

## 1-Centimeter Search Radar

国 There has long been recognized a need for a surfacesearch radar operating in the one-centimeter region in
order to gain the advantages of a very narrow beam and extreme definition on short-range targets. Early in the summer of 1945 the Bureau of Ships released a Radia tion Laboratory developmental model of such a radar to Sylvania to be used as a basis for a pre-production contract of 15 eçuipments. In order that an early evalua tion of radar performance in this frequency range could be made, only minor changes were authorized on the original developmental equipment. This procedure made possible delivery of the first pre-production model of the CXJG during the summer of 1946.

Preliminary tests and inspections by both Naval and civilian personnel disclosed that technical operation was in general satisfactory but some defects in mechanical design and layout of component parts were apparent Since it is the policy of the Bureau to give the utmost Since it is the policy of the Bureau to give the utmost
consideration to future servicing of equipment as well as the best in technical design and efficiency commensurate with space and weight limitations, several changes in mechanical design and electrical characteristics will be incorporated into any future production. The prepro duction models consist of 4 units, Trens preproduction models consist of 4 units, Transmitter-ReceiverAntenna Assembly, Control and Plan Position Indicator,
Gyro-Compass Synchro Amplifier, and the Rectifier


When the modulator circuit is triggered by the pulse from the cathode follower, the pulse-forming network generates a 4000 -volt pulse 0.17 microseconds in duration. This pulse is applied to the primary of the highvoltage pulse transformer which steps it up to 15,000 volts before application to the magnetron. When this high-voltage pulse is applied to the magnetron, oscillaions occur resulting in a high-intensity r-f pulse which is carried to the antenna by means of a waveguide. Conventional TR and anti-TR circuits are utilized to protect the receiver during pulse transmission and to prevent attenuation of the returning signal during reception.
In order to synchronize the outgoing r-f pulse with the other components of the system, a synchronizing pulse is taken off the cathode of the modulator which will occur simultaneously in time with the r-f pulse gencrated in the magnetron. This synchronizing pulse is used to trigger the sweep and marker circuits in the indicator and to gate the receiver for suppression of lutter at close-in ranges.

The receiver section of the transmitter-receiver unit is of the superheterodyne type employing a crystal mixer, eleven stages of stagger-tuned intermediate fre-
quency amplification, and a few other refinements such as AFC (Automatic Frequency Control), a stabilize oscillator circuit, STC (Sensitivity Time Contiol), and a ship s-head marker circuit. The 30 Mc output of the crystal mixer is passed through one stage of amplification (a GAK) connected as a triode to keep the noise level at a minimum) to the grounded-grid triode (6J6) which results in a very good signal-to-noise ratio. The output of the grounded-grid triode is then applied to the i-f amplifier strip ( 11 type 6AKS tubes) with the tuning staggered from 25 to 36 Mc . Staggered tuning, in combination with components of the 1-f strip, pro vides a bandwidth of 9 Mc . The gain of the receive is controlled by variation of the grid bias on the first six stages of the i-f amplifier.

A type 6AL5 is used as the second detector, with maximum video frequency response of 7 Mc obtained by the use of series peaking in the plate circuit. The reason for extending the video response to 7 Mc is to preserve the pulse shape which, due to its 0.17 -micro second duration, requires a large bandwidth for faithful reproduction. . The output from the detector is coupled to a cathode follower (6J6) which is connected as a single triode having a negative output voltage limited to a maximum of 0.9 volts. This output is carried via coaxial cable to the video amplifier strip located in the control and plan position indicator unit.
The AFC crystal mixer operates in the same manner as the receiver crystal mixer. Its purpose is to provide
a $30-\mathrm{Mc}$ intermediate-frequency voltage for the AFC channel. This intermediate-frequency voltage is obtained by piping the incoming r-f signal into the AFC crystal mixer along with the r.f. from the local oscillator, the resultant output being a $30-\mathrm{Mc}$ i.f. The output of the AFC crystal mixer is fed to an r-f trans former having secondaries wound in opposite direction. The noise voltages induced in the secondaries of this transformer are of opposite phase so that, at the center tap where the output is taken off, these voltages will cancel, while the i-f signal will be permitted to pass to the following two i-f amplifier stages. This is to eliminate as much as possible of the extraneous oscillato noise. The output from the first stage is taken off the cathode, and that from the second stage is taken off the plate.

The output from the second of these i-f stages is ap plied to the grid of a 6AKs operated as a phase splitte with outputs of equal amplitude but opposite polarity taken from the plate and cathode. If the frequenc rises above or falls below the desired $30-\mathrm{Mc}$ i.f. th voltage applied to the grid of the phase splitter will either swing negative or positive, respectively. This due to the action of a tuned circuit in the plate of the ventional polarity reversal through the second i-f stage The two outputs from the phase splitter are coupled to The wo oupus deal phe spliter are coupled to which orerate an Fccles-Jorde ( $A$ i One output is applied to each section of the flip-flop


Antenna assembly of the CXIG with protective covers removed exposing the trans.
mitter-receiver unit on the left and the modulator uni on the right.
circuit. The output voltage wave of the flip-flop cir cuit, taken from the plate of the second section, is coupled to the tuner grid of the local oscillator and asts an automatic variable adjustment to the oscillato which has a coarse adjustment set by the manual tuning control. The voltage applied to the tuner grid of the contr. The AFC circuit will always be negative in respect to ground but may be made more or less negative the maximum change tive as the occasion dolts.

In order to minimize the effect of variation of the ship's power supply on the frequency of the receiver local oscillator, the filament voltage and plate voltage are stabilized. The filament voltage of 6.3 volts at 950 cycles is provided by a 6 J 6 in a carefully stabilized Hartley oscillator circuit.

The sensitivity time control circuit employs a 6 J 6 connected as a single triode. In the plate circuit of this stage are the necessary resistive and capacitive components to produce the desired STC waveforms. When the positive trigger pulse from the modulator circuit is applied to the grid of the STC tube the circuit will conduct heavily but, since the pulse is very short in duration, this negative swing will be almost instantaneous, the depth of drive being controlled by the STC amplitude control located on the indicator front panel. This control effectively sets the plate voltage of the SIC tube. The recovery time or length of sweep of this circuit is adjustable, being controlled by two variable resistors which make up part of the R-C time constant in the plate circuit of the tube.
The ship's-head marker circuit is used to intensify swep linection of she sweep line to show the dead-ahead dirrection of travel of the ship, which permits the navigation of A ship through narrow lanes or alongside a dock. A synchro generator, located on the antenna drive unit housing, is mechanically coupled to the antenna shaft. At the base of the synchro generator are two microswitches and a cam. The first microswitch utilizes two contacts and the second switch only one. As the antenna rotates, the ship's-head marker cam revolves correspondingly so that, as the antenna approaches a deadahead position, the rise on the cam approaches one of the microswitch actuating rollers. The rise causes the arm of the microswitch (which we will designate S-1) cam revolves further, causing S-2 to open since there is only one contact on this switch. At the moment the antenna faces dead ahead S-1 drops back to its first position but S-2 remains open. The shift from one contact to the other by S-1 causes a momentary open circuit in the receiver gain control line. The result of this momentary open circuit is that the receiver noise, at full gain, appears as a bright line on the scope face
because the open circuit is of sufficient duration to allow two or three sweeps to be generated.

CONTROL AND PLAN POSITION INDICATOR The control and plan position indicator consists of a sweep multivibrator, sweep generator, video amplifier, range-marks circuit, range-marker circuit, and associated servo-amplifier and power-supply circuits. The information obtained by the equipment is presented on a circular type of indicator (PPI), with the set being a circular type of indicator (PPI), with the set being at the center of the indicator. Four range markers are
provided for rough estimation of target range. Five provided for rough estimation of target range. Five
range sweeps of $1,2,4,10$, and 20 miles are provided. The four range markers represent $1 / 4,1 / 2,1,21 / 2$, and The four range markers represent $1 / 4,1 / 2,1,21 / 2$, and
5 miles respectively on the five sweeps. A movable 5 miles respectively on the five sweeps. A movable is also provided to obtain fine range measurements, is also provied to obtain in inge measurements. the target, the range of the target is indicated accurately the target,

The sweep multivibrator is a one-kick multivibrator which is triggered by the positive synchronizing pulse


Front view of the rectifier power unit of the CXIG equipment.
from the modulator cathode circuit. The output of the sweep multivibrator is coupled to the sweep generator which employs a type 6SN/GT tube with associated circuit components. The constants of this sweep circuit are chosen by the SWEEP MILES switch on the indicator in such a manner that any one of five lengths of sweep time may be utilized by the operator. The output of the sweep generator is passed through two stages of amplification and coupled to the grid of a cathode follower. The output of the cathode follower, a positive voltage, is impressed on the grid of an 807 tube which acts as a current amplifier and inverter. The resultant output from this 807 is then passed through the deflec tion coils, thereby generating magnetic fields which deflect the electron beam in the cathode ray tube from the center toward the outer edge of the screen. These deflections of the beam effectively form the sweeps which are seen on the scope face,
The video-amplifier section of the indicator supplies the PPI with the target information, fixed and movable range markers, and the IFF signal, all of which may be presented on the screen. The video amplifier section video from the receiver unit is s and one 6H6. The ator by coaxial cable and applied the indi 6AC7 which acts as mixer applied to the grid of a is also brought into the indicator by coax cable is also broug caaxial cat passed and applied the these two voltages, the range markers and the movable range marker are likewise applied to the mixer amplifier, thus makion and amplified in this stage. The output of the mixeramplifier is coupled to a second amplifier stage (a peaking in shunt peaking in its plat high-frequency compensation. The cathode of the PPr through a clamping circuit utilizing a 6 H 6 diode to obtain the clamping action.
The remaining 6AC7 and 6AG7 are utilized to furnish an output from the indicator to repeater units. To accomplish this, the video line is tapped inside the in dicator and coupled to the grid of the 6 AC 7 whose plate circuit contains both series and shunt peaking for high-frequency compensation. This stage acts as a conventional amplifier and inverter, its output being deivered to the 6AG7 which is operno as a cathode follower. The reason for this cathode follower is to ing the video to the repeaters.

The range-markers circuit is designed to generate the fixed range markers. It consists of an oscillator, a cathode follower, a clipper stage, two amplifiers, and a blocking oscillator. The frequency of the basic oscil.
lator is determined by the L-C combination in the cath ode circuit, there being five possible combinations. They provide oscillations at frequencies which are equivalent to $500,1000,2000,5000$, and 10,000 yards respec tively, depending upon which sweep is in use on the indicator. The output of the oscillator, a quasi-sinewave, is clipped, amplified, and sharpened in the stages fol lowing the oscillator. The single-swing blocking oscil lator output is in the form of sharp pips which are the final range markers. These pips are connected to the mixer-amplifer through the markers potentiometer which controls the brightness of the markers on the indicator screen.
The movable range marker, or range ring, is gen erated in the range-ring circuit and is used to accurately determine and indicate the range of a target having range of 10 miles or less. This circuit consists of five tubes with associated components necessary to generate the marker and provide variable adjustment of its position coincident with actual range of the target The input trigger from the modulator circuit in th transmitter-receiver unit is passed through one stage of amplification and inverted with the resultant outpu applied to the second pulse. This negative pulse is ppere-ing circuit, a GNOTGT which is racting heavily since its grid is tied to 250 volts through G 16 . nerma lly out with high bid normally cut off with a high grid bias, and its plate is coupled to the grid or the second section. When the negative trigger pulse is applied to the second half of taneously, taneously, but the voltage rise in the plate circuit is made very linear due to current-regulating features in the circuit. The rate of rise, and consequently the slope of the voltage ave, is determined by the R-C constants in the circuit. There are two R-C combinations avail able to the operator through the use of the range switch the first generating a 2 -mile range sweep and the second a 10 -mile range sweep.
This exponential voltage wave is impressed on the plate of the second half of the 6 H 6 mentioned above In the cathode circuit of this tube is a precision wire wound linear potentiometer which is mechanically coupled to the range crank. This potentiometer sets the cathode voltage in such a manner that, when the exponential voltage applied to the plate reaches and slightly exceeds the cathode voltage, the tube will con duct. This point of conduction is determined by the setting of the range crank, the actual range being read on a dial mechanically coupled to the range crank When the diode conducts there will be an instantaneous heavy current flow through the tube, forming a pulse across the load resistor located in the cathode circuit The output from the cathode resistor is passed through

a differentiating circuit and applied to the grid of a 6AC7 which is biased beyond cutoff. This stage, acting as a clipper-amplifier, clips all but the very peak of the positive pulse of the input waveform, amplifies and inverts it, with a resulting negative pulse in the output. This negative pulse is passed through a pulse transformer and one more stage of amplification before being applied to the plate of a single-swing oscillator. Due to transformer coupling between plate and grid of this circuit, a positive pulse will be applied to the grid of the stage, which is normally at cutoff. This will cause the circuit to oscillate, developing a very sharp, well-defined positive pulse in its cathode circuit. This pulse, which is the range marker or range ring, is $\underset{\sim}{\triangleleft}$ cou coupled to the mixer-amplifier in the video section discussed previously.
The control and indicator unit has a self-contained power supply which supplies power to all the various circuits in the unit proper. This power supply obtains 115 -volt 60 -cycle input from the rectifier power unit. The outputs furnished by this self-contained power unit

## RECTIFIER POWER UNIT

The rectifier power unit supplies all the voltages (except the keep-alive) necessary for the proper operation of the transmiter-receiver. In addition this unit acts as a junction box and provides a switching arrangement for the presentation of either relative or true bearing on the indicator scree
The major outputs furnished by the unit are a +4000 -volt high-voltage supply, a +300 -volt regulated power supply, a -175 -volt regulated supply, and various filament voltages. The high-voltage power supply is a conventional full-wave rectifier system utilizing
two type 3 B2 24 tubes and associated circuit components to obtain the necessary 4000 volts in the output. This output is supplied to the modulator section of the trans. mitter-receiver through a high-voltage coaxial cable. The regulated 300 -volt supply employs a 5 U 4 G full-wave rectifier coupled to a vacuum-tube regulating section to rectifier coupled to a vacuum-tube regulating section to provide independence from a-c supply and load varia-
tions over a wide range. The negative 175 -volt regutated supply is obtained from a type 6X5GT full-wave rectifier having an output filtered to allow only a 0.13 -
volt peak-to-peak ripple voltage. This filtered voltage is then coupled to a vacuum-tube regulating section, the output of which is used to provide the reflector and tuning voltages for the local oscillator.
Fifteen CXJG equipments have been delivered by the Sylvania Company. Assignment of these equipments has been made to N.R.L., OpDevFor, USCG, USMC U. S. Army, and to selected Navy vessels. It is expected that much valuable information will be gained under the varied operating conditions of the above services One of these equipments is being used by the Naval Antarctic Expedition on the USS Northwind for navi gation purposes. Due to the very short pulse length feature together with about $08^{\circ}$ wism igh frequency should make the system ind super avigating through channels which are buy med $r$ in close waters, during perio ore marked darkess, fog or other Perses. The Buselily due darkness, fog, or other causes. The Bureau has not et received any actual reports of ope quipment from the Antarctic Expedition

The over-all design characteristics of the CXJG are as follows:

Primary input supply
R-f power output (peak)
Rrequency
Pulse length
Pulse length
Pulse repetition rate
Antenna beam width
(half-power points)
Antenna scanning rate
Antena gain (
I-f babsolute
(half-power points)
Video bandwidth
Video bandwidth
(half-power points
Receiver noise factor
Receiver features
Repeater output
Repeater output provisions

Range accuracy
Bearing accuracy
Range resolution

Bearing resolutio
Total weight

| $115-\mathrm{v}$ |
| :--- |
| pha |
| $23 . \mathrm{kw}$ | 23744 -24244 megacycles

7.150 microsecond
$0.8^{\circ}$ horizontal
$10^{\circ}$ vertical
1 or 6 rpm
or 6 rpm
4 db
9 Mc
7 Mc
16 db
AFC, STC
Stand
tandard trigger, video and 1 -
speed bearing for speed bearing for one re
peater. Variable range-ring
feed from radar. Additional feed from radar. Additional
repeaters can be added if a
standard PPI adaptor is used.
$+40 \mathrm{yds}(75-4000$ yards $)$
+200 yds $(75-20,000$ yards $)$ $\pm 40 \mathrm{yds}(75-4000$ yards $)$
$\pm \pm 00$ yds $(75-20,000$ yards $)$
55 $5 \begin{aligned} & \mathrm{yds} \text { on } \\ & \text { sweeps. }\end{aligned}$ 20 yds on 10 -mile sweep.
40 yds on 20 -mile swee 240 yds on
$0.5^{\circ}$
830

## PUBLICATIONS

The East Coast Publications Distribution Center has been moved from Williamsburg to Norfolk, Va. The correct mailing address is Officer in Charge, Publication Distribution Center, Bldg. No. 101, NSD, Norfolk, Va

## RECONDITIONING SA/SA-2 ANTENNAS

The high failure rate of antenna arrays for SA, SC and SK radar equipments caused special maintenance procedures to be inaugurated. It was requested that al antenna array frameworks and dipoles on these equipments be inspected quarterly, and those installed directly ft of the stack be inspected monthly. One of the constituents of stack gas is sulphur which, when mixed with salt water spray, forms sulphuric acid. Since stack gas reaches temperatures of 500 to $600^{\circ} \mathrm{F}$, it tends to dry out the paint on frameworks and dipoles, causing it to crack easily from vibration and the shock of gunfire. This allows the sulphuric acid accompanying the fumes to etch into the metal under the paint, and thus starts the material rusting.

When the paint on the frameworks or dipoles has started to crack, and rust has begun to form, immediate action should be taken to clean the surrounding surfaces of old paint, soot, rust, etc., using a good strong wire brush. The clean surface should then be repainted, using a hand brush, with two coats of 52P18 zinc chromate primer and two to four coats of exterior battleship gray paint. In this connection it should be noted that brass dipoles need not be coated with the 52P18 zinc chromate primer. Also, a coat of tallow and white lead should be caulked between the dipole support and the mattress junction, at the time of installing or reworking the dipole and dipole support on the mattress framework, in order to provide a weather seal to the frame interior.

In order to provide replacement material for recon ditioning the antenna assemblies of the Models SA and SA-2 radar equipments, the Bureau of Ships has issued Field Change No. 37-SA". This field-change kit provides for reconditioning the antenna radiator assemblies, "bazooka" assemblies, lobing motor cable end seal insulators, rings and gaskets. All necessary materials (except 5/64-or 3/32-inch diameter welding rods) are included in the kit. Ships in need of replacement parts for their SA radar antennas should contact one of the following activities for this field change kit:

Puget Sound Naval Shipyard, Bremerton, Washington Norfolk Naval Shipyard, Portsmouth, Virginia
Charleston Naval Shipyard, Naval Base, South Caro lina
Boston Naval Shipyard, Boston, Mass.
Terminal Island Naval Shipyard, San Pedro, Calif Philadelphia Naval Shipyard, Philadelphia, Penn. Naval Repair Base, New Orleans, La.
Naval Supply Depot, Clearfield, Utah
Naval Supply Depot, Bayonne, New Jersey
Naval Supply Depot, San Diego, Calif.
Naval Supply Depot, Mechanicsburg, Penn.


图Prior to the war and the development and production of radar on a large scale, usage of cathode ray tubes was limited to oscilloscopes and television. Oscilloscopes being test and laboratory instruments, are not inherently critical in requirements for interchangeability and high quality. Television was still in its early stages and had not been standardized. Radar brought requirements fo reproducible, interchangeable, rugged cathode ray tube with improved performance in spot size, sensitivity focusing, and screens, and better insulation at the base particularly for aircraft use. This entailed the develop ment of testing methods, standardized among tube manufacturers and government laboratories, in additio
to research on improvement of the tubes themselves. A knowledge of this material should lead to more effective and intelligent use of cathode ray tubes.

Cathode ray tubes fall into a variety of general classi fications, depending on size of screen, type of lumines cent material used, and methods of focusing and deflecting the beam.

NOMENCLATURE
Designation of each cathode ray tube type is assigned by the Radio Manufacturers Association Data Bureau according to a system consisting of three groups of sym

bols: (1) a number to correspond to the nominal maximum bulb diameter in inches, (2) a letter to distin guish between tubes of the same diameter, and (3) the letter " P " and a number to indicate the type of pho hor. For example "2AP1" signified "two-inch bulb" first two-inch type registered", and type "P1" pho hor. Addition of an "A" to this nomenclature "AP1A" signifies that an improvement was made sub sequent to the original registration of the 2AP1.

## THE ELECTRON GUN

The concentration of electrons into a beam is accom plished by electron optical methods of focusing, which are analogous to the focusing of light beams by a glass lens. Electron lenses are formed by electrostatic or magnetic fields which exert a bending action upon an elecron trajectory, the amount and direction of bending depending upon the strength of the field and the elecrode configuration.
Electron guns used in cathode ray tubes are based on a two-lens principle. The simplest form of gun structure and its effect upon an electron stream are illus trated in figure 1.
and through the lens to converge at a focal point, termed the "cross-over", where the rays cross the axis of the gun.
The first lens should be shaped to permit high curent without too large a cross-over beam diameter. Mis alignment of gun parts or apertures, or cylinders not quite round, will form an elliptical or poorly defined pot. As in light lenses, electron lenses are subject to aberrations of the chromatic and spherical forms, as well as aberrations caused by space-charge effects. These aberrations affect size and definition of the spot, but cannot be entirely eliminated. The first lens voltage should be high enough to saturate the emission from the cathode when maximum beam current is needed. High voltage also minimizes any de-focusing action of the space charge near the cathode, but too high a voltage makes the control of the electrons more difficult. The voltage of the first lens has little effect on the diameter of the beam at the second lens
The second lens images the crossover into a spot at the viewing screen, and is relatively simple. The major problems involved are ease and accuracy of construction and reduction of spherical aberration. Spherical aberration may be minimized by increasing the size of the


Figure 2-Tetrode electron gun. Accelerating electrode connected to second anode placed adjacent to grid.

The first lens comprises a cathode, a control grid and the first (or fociring) anode. Oxide-coated cathdes are used because of their high emissivity and low operating temperature. The latter feature is desired since aberrations in the lens, and consequently spot size, increase with the initial velocity of the electrons. Fo maximum efficiency, practically all the current emitted by the cathode should be concentrated in the spot since the radius of the beam going through the len varies with the radius of the emitting areas, a limiting aperture is used to mask off part of the cathode area The aperture is placed near the end of the contro electrode, the voltage of which determines the amoun of current in the beam, thereby controlling the bright ness of the spot at the screen. The effect of contro oltage on spot size is kept to a minimum. The secon (or accelerating) anode accelerates the electrons toward
lens, but the size is limited by the gun diameter in elec trostatic types.
The gun illustrated in figure 1 is of the so-called "triode" construction, and has the advantage of simplicity. The disadvantages are that the electrons are first accelerated by the low voltage of the focusing anode and there is interaction between focus and brightness ontrols, and also that close spacing and critical aligament are involved.
Modern cathode ray tubes usually contain the "tetode" form of gun, two versions of which are shown in figures 2 and 3 .
In the tetrode construction an accelerating anode, connected to the second anode, is placed between the grid and the focusing anode. This arrangement overcomes the interaction between focus and brightness controls


Figure 3-Tetrode electron gun with "zero-first-anode-current" construction, long accelerating electrode with masking aperture, and focusing anode.
in electrostatic types, and allows the cross-over point to be formed at a higher voltage with resultant smaller focused spot. The earlier versions used a disk, as shown in figure 2. An improvement recently introduced and now included in nearly all the newer service-approved electrostatic cathode ray tubes, is the "zero-Ib1" (zero-frrst-anode-current) gun, wherein the accelerating elec trode is lengthened, and carries a masking aperture which limits the beam diameter the first anode bein shortened to a disk which is used for focusing only. By this arrangement the focusing ande draws no current, this arrangement the focusing anode draws no current, ply bleeder without necessitating readjustment of focusply bleeder without necessitating readjustment of focustion). The beam is thereby reduced to a small width fiof fourg field, and badly aberrate tays are prevented from entering the second anode aperture.

DESIGN DETAILS AFFECTING OPERATING OF CATHODE RAY TUBE GUNS
The most wanted characteristics of a cathode ray tub are: (1) a small round spot at the screen, (2) high brilliance of the spot, (3) little effect on size or shape of spot with deflection, (4) ability to operate at low voltages, (5) high deflection sensitivity, (6) short overall length, (7) sensitive control of spot brightness (low grid-drive requirements). Some of the factors governing these points conflict with each other, so the design chosen for each type must be a compromise in which maximum performance in one respect is sacrificed to obtain improvements in some other characteristic. Ex amples of such considerations are listed below
Spot size is decreased by high focusing and accelerat ing voltages, a long gun, a short gun-to-screen distance and low beam current. Since the beam is densest at it core, it is better to reduce the diameter by masking of the edges than to generate a narrow beam current with less total current in it

A brilliant spot is attained by high beam current, i.e. high emission and high accelerating voltages. Enlarg-
ing the grid aperture increases current density at the beam center, but it also increases spot size. However spot size may be reduced by an increase in grid bias, hence the use of a larger grid aperture makes possible a choice by the operator of either a small spot for fine detail or a bright spot for high-speed traces.
Increase in spot size with deflection (deflection de focusing) which occurs in electrostatic types is due to the fact that the electric field which deflects the bean accelerates the side nearest the negative electrode more than the side nearest the positive electrode, resulting in an elongated spot. To reduce this distortion, the bean divergency angle should be small and the deflection tak place within a small angle. This means a long gun-to screen distance.

Operation at low second-anode voltage improves deflection sensitivity and permits the use of a compact, low-cost power supply. Alternatively, high voltage is advantageous because the beam current increases as th $3 / 2$ power of the voltage. The spot size decreases due to less space charge effect (space charge increases spo size due to mutual repulsion of the electrons in the beam), and the fluorescent screen becomes more efficient at high voltages.
Deflection sensitivity is increased by long gun-to screen distance, but brilliancy of spot is reduced.
Short overall length permits design for small spot size at the expense of deflection sensitivity and increased distortion due to a wider deflection angle.

The maximum permissible spot size at the end of th beam is determined by the maximum deflection angle length of deflection electrodes, and amount of permis
sible deflection distertion deflection distortion.
One method of increasing sensitivity without sacrific ing intensity or increasing tube length is the additio of a third anode, termed the intensifier, which acceler ates the beam toward the screen after it has been de flected. This anode is formed by a separate conducting ring on the inner surface of the bulb and is usually operated at double the second-anode voltage.

## FOCUSING

Electrostatic and magnetic methods of focusing each have advantages and disadvantages. Electrostatic system are subject to modulation defocusing, i.e., reductio of the grid bias requires lowering of focus voltage to keep the spot in focus. Magnetic focusing is not sub ject to this effect, and also introduces less aberration the second lens is not limited in physical size by gun diameter. The gun is simplified by the omission of focusing anode. On the other hand, the need for focusing coils and yokes to form the magnetic fields is an off setting factor in the choice of focusing methods.
Electrostatic focusing has been improved by the zeroIb1 gun described above. The most recent types of magnetic guns have also been improved by the inclusion of a limiting aperture in the grid cylinder. This masks of the edges of the beam and reduces spot size without $f$ bere the bern of the beam at the core. Both positioning and align ment of this masking aperture are critical. If maximum results are to be achieved, the aperture must be placed at the point where the beam is focused to its smallest and sharpest spot and must be aligned so as not to mask off any of the center portion of the beam. An electron gun of this type is illustrated in figure 4

Advantages of electrostatic deflection are (1) elimination of coils and/or magnets, (2) low power requirements and simpler deflection circuits, (3) freedom from ion spot, and (4) possibilities of higher deflection speeds

Deflection may take place after acceleration, or part of the acceleration can take place after deflection. In the former method there is an increased amount of beam current, and greater light output. In the latter method there is greater sensitivity, since the deflection is applied to a lower-voltage beam.
Deflection sensitivity increases with the width of the deflection plates and the length between deflection plates and screen, and is inversely proportional to the distance ore Deflection sensitivity is expressed in millimes or inches of spot deflection per volt applied to the ded flection plates, The "Deflection Factor", expression used anden plates. The Deflection Facor expression used sensitivity, and is expressed in volts required for inch of end is expressed in or inch of deflection

## MODULATION

Modulation may be applied to the beam by changing the bias voltage applied to the control grid to vary its


Figure 4-Electron gun for magnetic types with limit-
ing aperture.

## DEFLECTION

Magnetic and electrostatic deflection methods are both used. In magnetic deflection the field is inversely pro portional to the square root of the second anode voltage, while in electrostatic deflection the field is inversely proportional to the voltage, which means higher volt ages are needed with consequent difficulties in applying them to the deflection plates.

Advantages of magnetic deflection are: (1) greater structural simplicity and ruggedness since there are no deflecting plates and focusing anodes to be aligned and supported, (2) a shorter focal length, permitting a shorter tube, and (3) the feasibility of applying a rotating radial sweep which gives the polar indications needed for PPI radar displays.
intensity as used in television or PPI displays, or by maintaining the intensity constant and placing the modulation on one or both sets of deflection electrodes, as done in oscilloscopes.
The amount of grid driving voltage needed to modu late the beam over its full range from zero to maximum available beam current depends upon the cutoff characteristics of the control electrode. There is considerable variation in cutoff ranges from tube to tube. This is chiefly due to the very close spacing between cathode and grid (of the order of 0.01 inch ) and the fact that variation in the temperature of the cathode changes this spacing by a very appreciable percentage. The length of the "skirt" between the grid aperture disk and the end of the grid cylinder also affects the cutoff value. All


## Typical electron-gun assemblies <br> for tubes employing electrostatic

 deflection.present-day types require a considerable amount of grid drive. Attempts are being made to improve this char acteristic by placing a mesh grid over the grid aperture but to date this has not been very successful.

## LUMINESCENT SCREENS

Screen types differ in initial fluorescent color, phosphorescence or after-glow color, and persistence. Each type of screen used is identified by the letter $P$ followed by a number. Some characteristics and common uses of the screens used in Service equipments and laboratory test instruments follow:

P1-Green, single layer, synthetic willemite (zinc silicate) ( $\mathrm{Zn}_{2} \mathrm{SiO}_{4}: \mathrm{Mn}$ ) with medium persistence. Gen eral purpose oscilloscope screen with high visual efficiency.
P2-Bluish-green, single layer zinc-sulphide (ZnSC$\mathrm{dS}: \mathrm{Mn}: \mathrm{Cu})$ with long persistence. Used in low-frequency oscilloscopic work.
P3-Yellow, zinc-berryllium silicate with medium persistence. (Obsolete.)
P4-White, zinc-berryllium silicate mixed with zinc sulphide, medium persistence. Used in television.

P5-Blue, single layer, calcium tungstate $\left(\mathrm{CaWO}_{4}\right)$ with very short persistence. Has high photographic efficiency and medium visual efficiency. Most rapid decay of any production phosphor. Used for photographi ~
(Note: Some past tubes labelled P5 have contained the sulphide phosphor now designated P11)
P6-White, zinc sulphide mixed with zinc-cadmium sulphide, short persistence. Principal application is for color television.

P7-Cascade (two-layer) with yellow (ZnSCdS: Cu) and blue ( $\mathrm{ZnS}: \mathrm{Ag}$ ), long persistence. Short blue flash and long yellow afterglow. Used for PPI radar presentations.
P10-Single layer, dark-trace potassium chloride (KCl) (Not a phosphor, but a scotophor) with ma genta darkening. Used in applications requiring projec tion of a persistent image. Not active at present.
P11-Blue, single layer, zinc sulphide ( $\mathrm{ZnS}: \mathrm{Ag}$ ) with short persistence. Has very high photographic efficiency and high visual efficiency. Rapid initial decay but not quite as fast as P5. Can be used for photo graphic recording on moving films for frequencies up to 9 kc .
P12-Yellow, single layer ( $\mathrm{ZnF}_{2} \mathrm{MgF}_{2}: \mathrm{Mn}$ ) with medium persistence. Used in radar applications wher P1 screens produce objectionable flicker, i.e., for scans equal to or somewhat slower than visual persistence.
P14-Orange, cascade $[\mathrm{ZnS}(75 \%) \mathrm{CdS}(25 \%): \mathrm{Cu}$ and blue] with intermediate persistence. Noticeable flicker at 12 scans $/ \mathrm{min}$; best performance near 60 scans/ min . Chosen by AAF as optimum decay for AN/ $A P Q-7$. Similar to $P 7$ in operating requirements.

## DEVFIOPMENT OF JAN SPECIFICATIONS

Methods for checking each electrical and mechanical characteristic of cathode ray tubes to assure that each tube accepted for Service use falls within predetermine tolerance limits, and the determination of acceptable limits, have been worked out among representatives o tube manufacturers, equipment manufacturers, and Army and Navy engineers. The results are incorporate into the tube specification sheets for each type included in the Joint Army-Navy Specification JAN-1A for Elec tron Tubes. All types which have found their way into Service equipments in the past, or have been purchased as components of a commercial equipment and which require replacements, are covered by a JAN-1A specifica tion sheet so that satisfactory replacements may be pro cured for proper operation of these equipments.
In equipments of new design, only tubes on the cur rent preferred lists are to be used. The Army-Navy Preferred List indicates one preferred tube for each anticipated application so that the multiplicity of similar types (except for certain highly specialized laboratory use) may be reduced to one standardized line of highquality, carefully-designed, rugged cathode ray tubes. The 1947 issue of the Army-Navy Preferred List contains the following cathode ray tubes: 2AP1A, 3DP1A 3JP1, 3JP7, 3JP12, 5CP1A, 5CP7A, 5CP12, 5FP7A, 5 FP14, 5JP1, 7 BP7A, and 12DP7A
When new tubes are developed which prove superior for any particular application, they will be added or substituted into the next revision of Preferred List.

Alignment of electrodes and apertures has a critical ffect upon the performance and ruggedness of these tubes, and a great deal of work has been carried out ward improvement of the mechanical strength of th sun and deflection assemblies. Illustrations of variou types of cathode ray "mounts" for electrostatic and mag. hetic types are shown in figure 5 .

In addition to faulty mount construction, usability o the tube may be adversely affected by defects in the glass bulb or face, and in the luminescent screen. Glas defects which may occur are ,referred to as blisters, bruises, scratches, cracks, stones, scale particles, knots, cords, mold marks and chill or wrinkle. Screen blem ishes are identified as bright spots, dead spots, shadec and mottled areas, water marks, siphon marks, etc. Th size, number, and location of such defects are limited by inspection methods to assure that the pattern on the screen will not be marred to an extent which may inter fere with satisfactory operation of the tube. Othe mechanical checks must be made for bulb roundnes wall thickness, dimensional tolerances, neck straightness, face contour and neck and bulb alignments. The use o materials which are affected by magnetic fields may have an adverse effect on the behavior of the electron beam. There are also requirements for mechanical strength, electrical breakdown resistance, and wearability of the bases, snap, and cap connectors.

Electron-gun assemblies for ode ray tubes employdeflection.


圆 In the past twenty years tremendous strides have been made in the methods of communicating at the higher frequencies. New equipments have been developed and new methods devised which increased the speed of communications to such an extent that we now have systems such as the four-chaninel multiplex teletype handling 240 words per minute, and the single-sideband multitone system with a possibility of twelve teletype channels to handle 720 words per minute in a required band width of only 10 kc .
This progress in the high frequencies is indeed gratifying but it appears we have neglected the very-low frequencies, as traffic in the band from 5 to 35 kc is still moved at a speed in the vicinity of twenty words per minute. This snail's pace is shocking in view of the fact that these very-low frequencies have certain undeniable propagation advantages over all other frequencies, and are necessary for the fulfillment of Navy quemmiction requirements that cannot be met except with low frequency and high power. An increase in with low frequency and high power. An increase in trafic speed or this is possible A many proble to bers of this discussion of th

It has been accepted that the 500 -kilowatt TBJ and
AW transmitters speeds in excess of $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$. by ordinary on-off keying This was at first attributed to the long charge-discharge time required by the antenna, due to the use of a high- $Q$ antenna system. However, there is no data at hand to prove conclusively that all the limitations are confined to the antenna, and it is suspected that the power supply may also be limiting the speed due to charge-discharge

Frequency-shift keying on the very low frequencie was investigated, as the carrier in this system would be on continuously thereby overcoming any limitations which may be presented by the power supply. Test were made to collect data regarding the $Q$ of the an tenna used on the TBJ at Annapolis. The transmitter and antenna were both tuned to 18 kc and the power output noted. When the transmitter frequency was changed without retuning the antenna it was found that a 20 -cycle shift caused the output to be reduced to $50 \%$ This means that if frequency-shift keying were employed so that the carrier was shifted 20 cycles from the reson ant frequency of the antenna, the radiated power woul only be $50 \%$ of that possible at the resonant frequency This would cause tremendous power dissipation in th final amplifier and would therefore be a very inefficient system.

The dotting speed of the 60 w.p.m. teletype is ap proximately 23 cycles per second. However, the tele type signal is a square wave which contains not only the fundamental but also harmonics. Consequently, the resulting complex wave must contain at least the thir harmonic or its departure from the square wave pro hibits its use in systems such as the teletype. This mean limits, the third harm (oic dror speed must be tran .itt

In
In order to pass 23 cycles through a medium, that medium must therefore have a minimum band width of $3 \times 23$ or 69 cycles. The medium in this case is the TBJ antenna system which, as explained above, has a very narrow band, and therefore must be radically changed before it an be expected to pass a band of 69 cycles.


The bigh-power low-frequency transmitter at Lualualei.

It has been suggested that cable code may be adaptable, as twice the intelligence could be transmitted in the same bandwidth as that required for International Morse. However, cable code is a three-element or three condition code, composed of marking, spacing, and ero (or neutral) conditions, and it would be necessary to use special frequency-shift keyers and receiver adap ors to generate and convert the three radio frequencies for these conditions. Nevertheless, such equipment is not impractical and, moreover, there are two types of cable code available, Cable Morse and Cable Printing. The Cable Morse is only usable with a type-recording equipment and is not adaptable to aural or printing re
interesting but complex problem for which the Bureau of Ships does not yet have a satisfactory answer. However, in a recent demonstration of FSK applied to VL circuits, by shifting the frequency of a $20-\mathrm{kc}$ tank cir cuit in synchironism with the square wave keying, a doting speed equivalent to 500 w.p.m. was successfully transmitted. No official development proposals have been made as yet, but the problem is under active discussion. It appears possible to apply the principle to existing VLF equipments, as well as those to be pro cured. These investigations are being continued and it is hoped that a workable system will be developed in the near future.

With the advent of the first general-service radar (CXAM, SC-Series, etc.), technicians were confronted with strange phenomena not previously encountered in communication systems, such as higher frequencies, pulsed r-f energy, microsecond timing, scope presenta tion of returning signals, and rapid pulsing of the which presented itself, not oly to the techncians bit which presented isser, no well, was the proble pro to the design engineers as well, was the problem of protecting the radar receiver during the time that the high voltage r-f pulse was being transmitted by the transmitter section of the equipment. Since the repetition

close and open the receiver r-f input section in synchronism with each transmitted pulse was out of the ques tion. This inescapable fact led to the development of the electronic switching method commonly referred to as duplexing, which in its earliest stage consisted of a spark gap placed at a critical distance from a junction point so that when it was broken down due to a high voltage pulse from the transmitter it would present a high impedance at a pre-determined point, thereby preventing the high-voltage pulse from entering the receiver section. This spark gap was replaced in most cases by gas-filled tubes very early in the program, but the principle of operation remains the same.

In the late spring of 1944 the very popular SG (sur-


- $\quad 72$

Figure 1-E:line distribution in a rectangular wavegrbide, showing the reversal of polarity coincident with phase echanges. View is from the narrow side of the - "guide as indicated by the dimension." $a$ ".

However, a very late development in the waveguid duplexing field was the introduction of the magic lee

Basically, the operation of the magic tee depends upon the difference between the coupling of waveguide tees in the $E$ and $H$ planes. From waveguide theory we know that the energy in a waveguide is contained in two fields, an electric or $E$-line field, and a magnetic or $H$-line field. The $E$ lines in a waveguide can be repre sented as straight lines existing in a plane perpendicula to the widest dimension of the guide, while the $H$ line are in the form of loops formed in a plane parallel to the widest dimension of the guide. By this geometrical arrangement the $E$ and $H$ lines, and consequently th electric and magnetic fields, will be at right angles to each other.

To visualize the electric field in a waveguide let us assume a sine wave traveling along the waveguide with the peaks (both positive and negative) bounded by the walls of the wide dimension of the guide. In othe words, if we look at the narrow dimension of this guide we will see the rise and fall of the sine curve as a single line with the electric field intensity at its maximum at the peaks of the curve as shown in figure 1. Obviously this field would reverse in polarity with each reversal in

agure 2-Electromagnetic or $H$ lines in a rectangular waveguide as viewed from the wide dimension indicated
by "b". Note that maximum $H$ field occurs simultane. ously with minimum $E$ field as shown in figure
phase of the sine curve. If this field were plotted by arrows representing the $E$ lines at right angles to the side walls of the guide there would be few at the null point of the sine curve and a gradually increasing number as the field approached a maximum, with the polarity (indicated by arrow heads) changing direction in the guide as the curve swings through its complete cycle. This action is repeated rapidly thus developing the electric field in the guide.
An : H field may be visualized as a series of closed loops formed in a plane parallel to the wide dimension or side walls of the waveguide, as shown in figure 2 . From fundamental theory we know that in transmission of r-f energy through a transmission line the electric nd magnetic fields are inseparable but will be displaced rom each other by ninety degrees in both space and me. Therefore, if we combined figures 1 and 2 , it will be shown that the maximum electric field occurs

during the minimum magnetie field and vice versa, When two pieces of waveguide are joined as shown in fgure 3 they are said to form an $E$-plane 1 junction. f they are joined as shown in figure 4 they form an $H$-plane I junction. It is an established fact that when nergy is fed into a 1 junction with matched loads on the branch arms, the energy will divide between the wo branches. However, a fact which is often overlooked is the phase relationship between the electric fields in the two branches in reference to the junction point. This depends upon whether an $E$ - or $H$-plane unction is employed.
Referring to figures 1 and 3 let us explore the trans er of energy from the branch arm into the two section of the main waveguide. As can be seen from figure 1 , the $E$ lines are following a sinusoidal pattern as th wave approaches the end of the branch arm. As has been explained in preceding paragraphs, the polarity of the $E$ lines will be changing as the wave progresses arrows will be reversing direction in the guide simul-


Figure 4-Waveguides connected to form an H-plane T junction. Compare this type of junction with that
shoun in figure 3 .
taneously with the changes in polarity. Figure 5 is cut-away view of the $E$-plane junction looking at the narrow dimension of the guide. It can te seen from this figure that as the $E$ lines reach the end of the branch arm they tend to bend outward, forming curved lines which eventually will join the opposite wall of the main guide. However, in so bending and progressing out the two arms of the main guide, their phases will be reversed making them $180^{\circ}$ out of phase but identical in amplitude at any point equidistant from the junction.
On the other hand, if we consider figures 2 and 4 the transfer of energy is of a different nature. In figure 2 , which is a side view of the waveguide, we see the $H$ lines formed in loops in the waveguide, parlel to the sides of the guide. As stated previously, for ead series 0 H-line loops there will be a series of $E$ is, hed as guide. To better illustrate the division of $L$-line energ and the resultant identity of polarity in the branches, only four $E$ lines are shown in this figure. As the $H$ loop approaches the junction, it will statt to dide in two $H$ loops with accompanying $E$ lines. Since our reference in this explanation is the $E$ lines or field, we


Figure 5-Transfer of energy from a branch to adjacen arms through an E-plane junction resulting in out-of phase electric field conditions in the adjacent arms
can therefore state that the division of energy will result in no change in polarity of the $E$ lines in the loops of $H$ lines proceeding out the two branches. Therefore we have established that $E$-plane junctions will result in electrical energy proceeding out the branch arms 180 degrees out of phase, while $H$-plane junctions will result in electrical energy proceeding out the branch arms in phase.
A simple rectangular magic tee is a four-branch net work consisting of the main waveguide, an $E$-plane junc tion and an $H$-plane junction, as shown in figure 7. In this type of tee, if power is sent into any arm or branch with matched loads on the other three, the power will divide between the two and no power will go into the opposite arm as illustrated in figure 8 We see then that energy transmitted into the $H$-plane branch (magnetron input) will go out the two branches comprising the min wid (toward the two TR's) but mo man (h) since the $H$-plane energy excites ondy branch (antenna)


FIGURE 6-Transfer of energy from a branch arm into
adjacent arms through an H-plane junction resulting in an in-phase electric field condition in andiosenting in in-phase electrrc field condition in adjacent arm
Dimension " $b$ " is the wide side of the guide.
wave about the plane of symmetry, whereas it takes a odd symmetry to excite the E-plane branch. Conversel energy sent into excite the E-plane branch. Conversely energy sent into the $E$-plane branch will not couple to the $H$-plane branch for $E$-plane energy excites only an odd-function wave about the plane of symmetry, and it takes an even symmetry to excite the $H$-plane. Of course if there are reflections in either or both of the branches adjacent to the $E$ or $H$ planes which will alter the phase of the outgoing wave, the opposing side arm (either $E$ or $H$ junction) will be excited by these rehected waves. On the other hand, reflected waves from equal mismatches in the adjacent branches at points equidistant from the junction result in a wave converg ing on the junction with the same symmetry as the diverging wave, so that the reflected waves can only excite the side arm from which they were originally fed.
By the reciprocity theorem it is established that energy coming in from the two adjacent branches will only go into one of the junctions, either the $E$-plane or the $H$ -


FIGURE 7-Two views of a conventional rectangular magic tee showing both an
E- and H-plane junction with the main waveguide extremities indicated by $L$ and $R$.
plane, depending on the phase of the two when they rrive at the plane of symmetry. For example, if energy is originally transmitted through the $E$ branch it will proceed out the adjacent arms out of phase. Upon returning to the junction this energy will proceed out the branch, provided the phase relationship has not been thus mismatch should be the two waves into phase. If this waves in should be placed in the system to bring these res the plase, they would proceed out the $H$ plane but would not excente $E$ pould excite the $H$ plane but would not excite the $E$ plane.

For most applications of the magic tee it is desirable to have some matching transformers added to the tee. The only restriction on these matching devices is that they do not upset the symmetry of the waves at the junction. If the two ends of the main waveguide are terminated in matched loads and energy is sent into the E-plane branch a mismatch will be found which may ee cancelled out by the addition of a suitable iris or other device in this branch. Similarly, one may produce a match for energy fed into the $H$-plane branch.

A magic-tee duplexing system is shown in figure 8 , in which the orientation of the $H, E, L$, and $R$ arms of the two magic tees corresponds with those in figure 7 The distances from the junctions to the two TR boxes differ by a quarter wavelength, but the total distance rom the lower magic tee to the upper magic tee is the same through both paths.

Magnetron power goes out the arms in which the TR tubes are located, the two waves being in phase since they are fed in on an $H$-plane junction. These waves are reflected from the fired TR tubes and come back to the magic tee out of phase since one wave has had to travel a half wavelength farther than the other. They then will go out the antenna arm since it is an $E$-plane
junction and will be excited by the out-of-phase components arriving at the junction. The leakage powers of the fired TR tubes arrive at the upper magic tee junction in phase and thus go out into the dummy load fhe IR boxes are identical. When the system is reciving a signal, he recived power comes in the anthe TR bes ins and the ives boxs in ther pasic tee junction out of phase arrives at he upper pagic tee joction on of phase. Upon anrval at the upper magic tee out of phase they will excite the $E$-plane branch which goes to the reeiver, thus transferring the received nergy to the re ceiver rather than to the dummy load


Figure 8-Schematic diagram of a magic tee duplexer tilizing two rectang an tube

The main advantage of this type of duplexer is the elimination of the anti-TR boxes. Since in a magic tee here is no coupling between the opposite arms with equal loads on the adjacent arms, no received power wil be lost into the magnetron. In the X-band model the total anti-TR loss (loss into magnetron, reflection out antenna, and power into dummy load) is less than 0. db over a $12 \%$ band for all possible magnetron im pedances. Another advantage is the cancellation of the leakage power of the two TR boxes. Any received powe leaking into the magnetron is either absorbed in the magnetron or reflected by the magnetron and reaches the second tee in such a phase that it will not go out the mixer arm.
The main disadvantage of this type of duplexer is it size. Another disadvantage is the fact that the TR tubes must dissipate 1.4 times as much power as they would if they were mounted in an ordinary duplexer. Since a TR is a gas switch, the voltage across it when fired is essentially constant regardless of the power level. The power dissipated in a tube is proportional to the current through it. Let us assume that we mount the tube on the top face of the guide. Then the power dissipated in
it is equal to I. In a magic tee, the power in arms $L$ o $R$ traveling toward the TR tube is half that in the main guide. Therefore, the amplitude of the current wave is equal to $1 / \sqrt{ } 2$ or 0.707 times the main line current. The TR tubes present a short circuit which is the current maximum and the magnitude of the current at the TR tube is 2 times that in the main line, so that the power dissipated is 2 times that in a normal duplexer A third disadvantage is that the leakage power which gets into the mixer from high-level signals coming in the antenna is the sum of the leakage from two TR tubes instead of one as in a normal duplexer. For this reason leakage tolerances on the TR tubes must be minimized.

The rectangular magic tee has many applications such as (1) a variable phase-delay device, more commonly known as a line stretcher, (2) an impedance transformer for matching various devices to a matched line, (3) a balanced mixer, (4) the magic tee duplexer as described previously in this discussion, (5) a balanced mixer plus automatic frequency control, and (6) a double balanced-mixer.

## Multi-Channel Two-Tone

Radio Telegraphy

回 During the late war, the armed forces needed greatly expanded communication facilities between a multitude of widely separated points. This need was filled to a large extent by the use of radio-teletype circuits, employing the two-tone or frequency-shift type of trans-
mission. One of the main factors which led to this widespread use of teletypewriters on radio circuits was the success of the Multichannel Two-Tone Radio Telegraph System, which was used by the Navy and the Army for long-distance communication. These fre-quency-shift radio circuits were used as the backbone links in a world-wide network of communication facilities.

Shortly after Pearl Harbor, the armed forces were confronted with the need for increased telegraph com munication between the United States and many dis tant parts of the world. At the same time, many of the radio-telephone terminals of the Bell System were not fully used either because the distant terminals were in enemy country or because of Government restrictions on overseas telephone conversations. Representatives of the American Telephone and Telegraph Company, aware of this situation and of the need for additional facilities, pointed out that many additional telegraph circuits could probably be provided by applying voicefrequency carrier-telegraph systems to radio-telephone circuits. It was requested that arrangements be made to investigate this possibility, and it was decided that tests would be made by engineers of the American Telephone and Telegraph Company and Bell Telephone Laboroatories. The demand was urgent. There was no time to develop devices particularly suited to the purpose, and thus equipment already in production had to be adapted, if possible

An obvious starting point for the tests was to try the operation of a standard VF (voice-frequency) telegraph system (similar to the Navy Model UN Equipment described on page 12, Electron for April, 1946) on a channel of a twin single-sideband radio system. It was surprising to no one, however, that a very brief trial indicated this was impracticable. The received tone of one channel of a VF telegraph system operating over such a radio channel fluctuates over a range of many db from instant to instant. At one moment it may be received at normal level, and a few seconds later the level. may be 20 or 30 db lower. It might at first be thought that an automatic volume control could be made to that an automatic volume control could be made to
compensate for such level fluctuations, and doubtless compensate for such level fluctuations, and doubtless standard VF telegraph system, however, a single tone is used for on-off keying of each channel, the tone being connected to the circuit for dots and dashes (commonly called marks), and removed for spaces. If a volume control were me fast enough to follow the very rapid control were made fast enough to follow the very rapid fading that is sometimes experienced, the noise during spaces would be amplified to the same level as the
signals, and thus no intelligence could be received. This sets a limit on the possibility of improvement by such means.


Figure 1-Circuit arrangement of transmitter terminal that supplies six two-tone radio-telegraph channels.

These considerations led to abandoning the attempt to use single-tone transmission, and it was decided to adopt two-tone transmission (frequency-shift keying) instead. This latter method of transmission was developed by the Laboratories and, beginning in 1928, was used for passing information by teletypewriter to assist in handling telephone traffic over the radio-telephone circuits between London and New York. For wo-tone transmission, one channel of the standard system is used for marks and an adjacent channel, employing a tone 170 cycles higher in frequency, is used for spaces. With such an arrangement, the amplitude of the transmitted signal is substantially constant, and a fast-acting gain-control device may be used without danger of raising the noise to the level of the signal. [See p. 5, Electron for Sept. 1945]. This two-tone transmission, however, has the disadvantage of requiring two channels for each message, and thus provides only six telegraph circuits for a twelve-channel system.
The results obtained with this two-tone system were much better, but they were still not considered satisfactory to meet present-day requirements. What was needed was a limiter, a fast-acting device that delivers a constant output for wide variations in the input signal level. No limiter was in production, but one had been built at the Laboratories for some experimental work, and this was borrowed for the tests.
With the limiter, there was a marked improvement. The circuits were now good enough for automatic transmission of International Morse code, in which the received dots and dashes are recorded on a paper.tape, but considerable further improvement was desired for teletypewriter transmission, because even with the limiter, deep selective fading would at times reduce the signals below the noise level. With the former methods of transmission, the receiving operator can use judgment


Figure 2-Circuit arrangement of receiving terminal for two-tone radio-telegraph transmission.
in interpreting the message, but a teletypewriter cannot use judgment, and better transmission is consequently required.

It is a well-known characteristic of selective fading that when a signal received at one frequency has faded so that it cannot be detected because its intensity is less than that of the noise or static, a signal at a frequenc only a few hundred cycles away is usually being received at a much higher level; and by the time this secon frequency has faded, the first will generally have re turned to a usable value. It seemed reasonable, therefore, that if the signal were sent simultaneously on two frequencies, one or the other frequency could be received most of the time

This "frequency-diversity" system was tried and the improvement was outstanding. The sending relays of two channels carrying frequencies that differed by about 1000 cycles were connected at the sending end so that the same two-tone signals were sent out simultaneously on two pairs of frequencies. The detectors at the re ceiving end were connected to a single receiving relay Now the circuit was satisfactory for multi-channel tele type operation and made possible the provision of much needed facilities.

Standard voice-frequency carrier-telegraph equipmen was modified quickly by the Western Electric Company for two-tone operation, limiters were built, the equipment was assembled in cabinets and delivered for shipment to overseas points where it was most urgently needed. Single-sideband transmitters and receivers were supplied also for locations where they were not already available. The Long Lines Department made the necessary arrangements for the home terminals of these systems.
The circuit arrangement for one channel of the system is indicated in the first two illustrations. On a marking pulse, the transmitting relay short-circuits the 935 -cycle supply and allows the 765 -cycle supply to pass to the radio transmitter, while for a spacing pulse
band-pass filters select the two frequencies for this chan nel and pass them to the limiter. At the output of the limiter, similar band-pass filters select the two frequencies and pass them to separate detectors, the outputs of which operate the receiving relay.
From each such system, six two-tone circuits could be borained such system, six two-tone circuits could be Boehme recorders for international Morse code with writer recorders for receiving. To obtain tecype had to had to be used for each message, and then there were only three channels per system. The advantages of teletypewriters in furnishing immediate typewritten copy and not requiring skilled operators were appreciated, but the attendant reduction in the number of circuits per system to three was unsatisfactory on some routes. Some means were therefore sought to increase the number of telegraph messages that could be transmitted over a single radio channel.


Figure 3-Transmitter terminal for multi-channel two tone radio teletypewriter transmission.

A voice-frequency telegraph system suitable for pro iding six two-tone circuits occupies a frequency band less than 2000 cycles wide, while each channel of the single-sideband system can transmit a band about 5000 cycles wide. On one radio channel there was thus space or two voice-frequency telegraph systems, but no channel filters for frequencies above 3,145 cycles were available. To design and build them would have required too much time. There was a channel shifter, however, that was used on radio circuits to move the voice transmission from the lower frequencies to the upper frequencies of one channel of a single-sideband circuit. By using such a shifter, a method was designed for transmitting six channels of the frequency diversity telegraph system -twenty-four tones-over a single radio channel without requiring much additional equipment.

The arrangement of the transmitter is shown in figure 3. Outputs of six two-tone telegraph circuits, and a single-tone circuit used as an order wire, are connected together and then passed through a resistance network to a two-branch circuit-all frequencies flowing equally
into each branch. Along the upper branch they pass directly to the radio transmitter through a low-pass filter that passes all frequencies below about 2600 cycles. Along the lower path, they enter the shifter circuit, where they are modulated with the current from a 5270 cycle oscillator. A balanced copper-oxide modulator is employed that eliminates the carrier, and the upper sidebands are eliminated by a low-pass filter in the shifter. The lower sideband frequencies, which are higher than those in the upper branch, are then passed through a high-pass filter to the radio transmitter.

The twelve frequencies from the six two-tone telegraph channels are spaced 170 cycles apart from 425 to 2295 , inclusive, and the order-wire frequency is 2465 . The lower sideband frequencies resulting from the modulation of these frequencies in the shifter with 5270 cycles are spaced 170 cycles apart from 4845 to 2805 . The radio transmitter thus, transmits thirteen frequencies spaced 170 cycles apart from 425 to 2465 cycles and a corresponding set of thirteen frequencies from 2805 to 4845 . Each teletype signal pulse is represented in this group by two frequencies. Thus, a marking signal this group by two frequencies. Thus, a marking signal for the No. I teletypewriter circuit is represented by
frequencies of 425 and 4845 ( $5270-425$ ), while a frequencies of 425 and $4845(5270-425)$, while a
spacing signal for the same channel is represented by spacing signal for the same channel is represented by
595 and 4675 (5270-595) cycles, and so on for the ( $5270-595$ ) cycles, and so on for the
other five channels. If selective fading over the radio path should drop out the radio frequency corresponding path should drop out the radio frequency corresponding always be carried on to the receiver by the radio fre-
quency corresponding to 4845 cycles, which is about 4000 cycles higher.
Variations in the radio path cause large changes no only in signal strength but also in the phases of the alternating currents received. At the receiving end therefore, if the 4845 -cycle current were restored to 425 cycles and combined with the 425 -cycle current transmitted directly without being shifted in frequency, the two currents would reinforce each other at times, but at other times they would tend to cancel each other. To avoid this cancellation, the frequencies that were shifted to higher values at the transmitter are restored to frequencies differing from their original values by modulating with an oscillator frequency of 5610 cycles instead of 5,270 . Thus, an original frequency of 425 cycles, which is changed by the shifter of the transmitter to 4845 cycles, is restored at the receiver not to 425 but to 765 cycles. The corresponding spacing signal of 595 cycles would be restored to 935 cycles. At the receiver, therefore, the two pairs of frequencies or this particular channel would be 425 and 595, 765 and 935 cycles. These tones are combined in a hybrid coil, and amplified in a common limiter. At the output of the limiter, they are once more selected by band-pass filters and rectified in marking and spacing detectors. This arrangement thus provides a six-channel requency-diversity system without the duplication of detectors or the development of new filters.
At the receiving end, therefore, the circuit is arranged as indicated schematically in figure 4. At the output of


Figure 4-Receiving terminal for multi-channel two-tone radio teletypewriter transmission.
he radio receiver, low-pass and high-pass filters separate he frequencies below about 2600 cycles from those above it. The output from this low-pass filter is conhected to the input of thirteen band-pass filters for the frequencies 425 to 2465 cycles, inclusive, while that from the high-pass filter passes to a channel restorer where the frequencies are modulated with the current from a 5610 -cycle oscillator. Channel filters in this branch then separate the various frequencies, and the pairs of frequencies from each branch corresponding to single channel are combined in a hybrid coil and then amplified in a limiter. At the output of the limiter are our channel filters. Two of them select the two frequencies corresponding to marking signals and pass解 he frequencies for the space signaling and pass them the spacing detector. Although one frequency of a will usually be peen eliminated by fading, the other a present to operate the receiving relay
This multi-channel two-tone system [Navy Mode UP Equipment] is capable of handling a large amount of traffic over a single radio-frequency assignment with comparatively low power per channel Unlike the systems of large traffic capacity, it furnishes independent start-stop teletypewriter circuits which have maximum flexibility in that they can be readily terminated in tee typewriters of types in heavy production and general use, or extended over land lines to such machines at different locations by simple connections which permit use of standard forms of start-stop regenerative repent ers where these are necessary. Operation with narrow frequency bands for the individual channels was mad possible by the inherent frequency stability of the singe sideband circuit. The system was designed and mad available quickly, utilizing for the most part stand components already in production

Multi-channel two-tone circuits have been used to connect headquarters at Washington with the Armed Forces in distant parts of the globe. The Bell System owned and operated one terminal of systems extending to England, the continent of Europe, Hawaii, Australia and two locations in Africa The Navy and Army owned and operated both terminals of other systems. It is understood that their use was very satisfactory and of great value in the prosecution of the war.

## OCT FREQUENCY-SHIFT MONITOR

Reports from certain field activities indicate some OCT's are being received in an inoperative condition. The adjustments necessary to restore normal operation are in some cases considered "factory" adjustments and have not been included in the instruction book. To
assist field personnel, the noted malfunctions with the proper correction steps are listed below.

Instability of R-F Oscillator Tuning Controls.
1-Remove oscillator oven cover and tighten thrust bearing of main tuning control shaft.
2-Tighten coupling of main tuning control shaft and the shaft extension carrying the main tuning knob. A long (approx. 6 -inch) "Allen" setscrew wrench is necessary to perform this adjustment.
3-Tighten vernier tuning shaft bushing.
Excessive Distortion in Audio-Frequency Output
1-Place a-f oscillator switch (C) S104 to Ext., the f BFO switch (G) S101 to OFF, and disconnect any r-f input to connector J192 (located on rear of chassis).
2-Note current indicated on level and beat indicator on both r-f beat and tune and frequency-shift CHECK positions of the meter switch. This current should be between .05 ma and .1 ma in either position.
3-Provided these currents are not between the limits specified, remove the bottom plate from the monitor equipment and adjust grid bias potentiometer R148 (located in the rear right section) until the proper current is obtained. If unable to adjust these currents to equal and proper values, the larger current should be st to 1 ma then if the smaller current is less than one half this value a different tube should be substituted for V 105 and the above procedure repeated


Reminds me of them nutting dipoles the EO was telling us about.

or this?


If you are receiving too many copies of Electron, or if there are not enough to go around, let us know about it. Or you may drop us a line anyway, just to let us know how you like the magazine.
 Navy Department,

## IN A QUIZ-THAT IS

O O IS THIS A MAN OR A MOUSE?


IS THIS A TUBE OR WHAT?
-AND What the h- can this be?
FIND THE ANSWERS TO THESE AND OTHER PROBLEMS IN ELECTRON

