CONFIDENTIAL

BUSHIPS
 JUNE 1950

IS RUNNING OUT

FOR THE CARELESS!

THIS
 ISSUE

Sofar 2
More About Electronics Administration 6
Mark V IFF/UNB Part 38
E.S.O. Monthly Column 34
Binders for Electron Magazines 36
Electron Orbit 37
Navy Scores Again! I.R.E. Convention. 38
1950 Electronics Conference at Bureau of Ships 39
QHB Series Tuning 39
Danger! Model BC-610 Transmitting Equipment. 40
GCA Box Score 40
The Field Engineer Sez 41
Electron Index, Volume V 42
the printing of this publication has been approved by the director OF THE BUREAU OF THE BUDGET 13 JANUARY 1950
DISTRIBUTION: BUSHIPS ELECTRON is sent to all activities concerned with the installation, operation, maintenance, and supply of electronic equipment. The quantity provided any activity is intended to permit convenient distribution-it is
not intended to supply each reader with a personal copy. To this end it is urged that new issues be peassed along
not qut intended to supply eachi reader a convenient location where interested personnel can read them more carefully. If
quickly. Copies may then be filed in
the uantity supplied is not correct (either too few or too many) please advise the Bureau promptly. CONTRIBUTIONS: Contributions to this magazine are always welcome. All material should be addressed to
\qquad
The Editor Brachips Elec
Navy Department
Washington 25, D. C.
and forwarded via the commanding officer. Whenever possible artices should be accompanied by appropriate sketches,
diagrams, or photographs.
CONFIDENTIAL: Certain issues of BUSHPs ELECTroN are classified confidential in order that information on all types
of equipment may be included. The material published in any one issue may or may not be classified, however. Each of equipment may be included. The material published in any one issuue may or may not be classified however. Each
page of the magazine is marked to show the classification of the material printed on that page. The issue is assigned page of the magazine is marked to show the classification of the material printed on that page. He issue ir assine as
the highest classification of the material included Classified material should be show. only to oncerned personel as
provided in U. S. Navy Regulations. Don't forget, many enlisted men are concerned wwith the contents of this magazine. provided in U. S. Navy Regulations. Don't forget, many enlisted men are concerned with the contents of this magazine.
BuSurs BuShips ErECTroN contains information affecting
Espionage Act (U.S.C. $50 ; 31-32$) as amended.

in experimental shore station was set up in the Bahamas to test bombs and detonators, hydrophones, cables, and monitoring equipment, and also to deals. The experimental results were promising, and triangulation tests were made later in the year to locate bomb explosions, using the Bahamas shore station and two U.S. Navy ships as he Bahamas shore sotw netw were he three stations of the dropped from dif ir. Some equa fo fored with the intallation of a permanent sofar network in the Northeast Pacific. It was realized that this represented a major ndertaking involving extensive hydrographic surveys f prosed sites, improvement of equipment and er fundamental reecr In 1947 the work was, in the main, transferred the US Navy Electronics Laboratory which has the U.S.
Installation of the Northeast Pacific sofar network
Installation of the Northeast Pacific sofk is ready for has recently been completed air-sea rescue system as soon as sufficient trained Naval personnel are available.

The Northeast Pacific Sofar Network

Originally it was intended to set up sofar shore stations at Monterey and Point Arena in California and at Kaneohe and Hilo in the Hawaiian Islands. However, at Hilo hydrographic conditions were unfavorable and ferminal facilities inadequate, so the Hilo project was abandoned. The Monterey station was completed, but unfortunately signals received by it did not have the characteristic sofar pattern, particularly the sharp cut-off needed for accurate timing. It was found that reverberafions from the walls of a submarine canyon in which the

Monterey hydrophones were located were the cause of the abnormal signal characteristics. Since accurate signal iming is vital, the Monterey station was dismantled and replaced by a station at Point Sur, California
The Point Sur station and the two at Point Arena and Kaneohe have been completed, and the group of three makes up the Northeast Pacific network. Each of the three stations has been intensively tested individually, and shown to provide satisfactory signal reception. The group has also been tried out as a network by dropping about 150 test bombs between the California coast and Hawaii. The average error between the sofar fixes and the observed positions of the ship dropping the bombs was about 3 miles. These results were satisfactory, and the network will soon be put into continuous service. However, more trials of the network are being made by means of test cruises in other areas. In addition, spot tests will be made using aircraft and surface vessels as opportunities permit.

Station Equipment and Installation

Earlier work and testing of the Northeast Pacific stations have shown that the primary requirements for sofar monitoring equipment include: (1) sensitive response from 30 to 500 cycles; (2) minimum self-noise in the amplifiers; (3) provision for switching from one hydrophone to another, with means for introducing a signal generator for equipment calibration and maintenance; and (4) suitable means for recording cutof time of the signal (to 0.1 second), and for chronometric verification by introducing Station WWV time signals. The salient features of the equipment developed to satisfy these requirements are shown in simplified block diagram form in Figure 4. Preamplifiers (not shown in Fig. 4) are located at the beach and connect to shore station equipment (Fig. 5) comprising electrically in-

FIGURE 4.

FIGURE 5.
tegrated receiving, recording, and timing units, capable of continuous operation.
The amplifier equipment, which is in duplicate, consists of the beach preamplifier, a 600 -ohm attenuation pad, a 500 -cycle low-pass filter, and a line amplifier, eeding into the power-level recorders.
The two graphic power-level recorders are put into operation by an automatic switching device actuated by the incoming signal. The signal is also fed to another amplifier which drives a speaker for aural monitoring A continuously operating magnetic-tape recorder is provided to record the signal before its amplitude is suff cient to actuate the automatic switching device. When a signal is received the operator must manually switch off the operating recorder before $21 / 2$ minutes have elapsed or the signal is erased
A standard Navy break-circuit chronometer affords time indexing to 0.1 second by actuating a stylus on each power-level recorder through a d-c time-tick amplifier. Another time-tick amplifier keys a 3 -kc oscillator which provides time-indexing signals to the magnetic tape recorder.
The recorded signal may be played back to the powerlevel recorders, time ticks being furnished by a band-pass filter and rectifier unit which separates the recorded 3 -kc time signals and operates the indexing stylus. A omplete record of the signal is thus provided.
At least two deep-sea piezoelectric hydrophones, placed at the depth of the sound channel, are used for
each station. From the hydrophones, heavy armored cables, which may be as much as 20 miles long, lead to the monitoring equipment. A special cable-laying ship is required for cable installation, and an oceanographic survey ship first makes a detailed hydrographic survey o find the most favorable location for the hydrophones and the best cable route to shore. Both ships make use of shoran navigational control to insure accuracy of installation. Bottom character, bottom topography, currents, wave conditions, temperature gradients and other factors have to be determined and evaluated.
During installation of the Northeast Pacific stations was found that voltages high enough to mask sofar signals were induced in the cables between the beach and the monitoring equipment as a result of ground potentials set up between power-line grounds and the sea. .The interference was made negligible by amplifying the sofar signal at the beach before transmitting it to the amplifier of the shore station. The use of beach amplifiers is now standard practice.

Sofar Ordnance

Up to the present, various bombs have been used to produce the sound signals eventually picked up by the monitoring equipment. The bomb currently being manufactured carries a main charge of 4 pounds of TNT, and is fitted with six diaphragms each designed to rupture at a specific depth of water. Rupture of any diaphragm actuates the detonator. The diaphragms are protected by caps, and in operation the appropriate cap is removed to arm the bomb so that it will explode at the desired depth.

Problems

Research is being prosecuted to improve station equipResearch is being prosecuted to improve station equip-
ment in general, so as to provide simple and troublefree operation
Among individual items of equipment, cables have caused the most grief, and a number of cable failures occurred during the installation of the Northeast Pacific network. In some cases open circuits developed; in thers the cables remained electrically good but became physically snarled, leading to early failure. The cables lso to bing actiones of oral sea bottom. The Bureau of Shins is now engaged establishing the specifications of a suma cstable with suitable physical characteristics for use at sofar stations.
An attack is also being made on more fundamental problems: for example, shadow zones are being studied to find how they affect signal character, the sofar attenuation constant is being determined so as to establish he optimum weight of bomb explosive, and basic steadily gathered and analyzed.

by
тнома

Cdr. H. E. Thomas, SE, USNR EO, Staff, Commander Service Force, Atlantic
in all ships of the Atlantic Fleet since March of 1949, and during that time approximately seventy percent of he total have been rehabilitated. If Mr. Scott's statement were true, then surely one of those ships in excellent condition should have been discovered. Actually, among the rehabilitated destroyers, the ship in best condition required more than one hundred fifty man-hours of work. Of further interest, it may be noted that the destroyer which should have been in best condition was rehabilitated in May 1949 and was again worked on in October 1949. Total man-hours involved were four hundred forty-eight.
In the same paragraph Mr. Scott attacks the administration and supervision in the ships, indicating that improvement in the efficiency of administration and supervision will largely eliminate the problem of electronic maintenance. In an organization as large as the Navy, maintenance. In an organization involved, it seems rather
with the numerous individuals in difficult to assume that the command responsibility is difficult to assume that the command responsibility is
better or worse than it has been in the past or will be in better or wore The Navy will probably always have some the future. The Nay and some poor skippers. The excellent, some average and some poor skippers. The rfficiency of the ship's administration, however it should efficiency of hat of this nature are not apt to be apparent that attempts of this nature are not apt to solve the electronics problem.
In the third paragraph, Mr. Scott states "the condition Of the electronic equipment is representative of the amount of supervision exercisel y "discrepancies are not necessarily the result of a shortage of trained men, nor due to the lack or the abill help a little men we have." Improved supervision will help a little in improved conditions, but the experience gained during the past few months indicaes indion with their equipment in the which have one or two really competent ET's aboard. There is no substitute for ability. Utopian supervision will not aid incompetent ET's in the maintenance of even the simplest equipments.
In the remaining paragraphs, except the last, there is much that is true and Mr. Scott has quite effectively brought out several points that should be kept in mind. However, he makes one statement which should be challenged. He writes "it's not clear that we need them," referring to more officers in the Navy. Whether or not we need more officers is debatable of course, but if the actual needs of the Navy are to be met, there seems little doubt that more officers is the only answer. One fact is indisputable-the Navy must have more technical talent. This requirement is currently being met by the employment of civilian technicians. Furthermore, experience shows a continuing need for these technicians or a reasonable substitute for them. The technical talent required by the Navy cannot be obtained by recruiting capable technical personnel as enlisted men. Such in-
dividuals will not accept the status of an enlisted man. Therefore, the Navy can either continue to employ civilian technicians or recruit suitable individuals in officer status and guarantee them careers comparable with other officers. The latter is the least expensive. The only other alternative is to permit the equipment to slowly deteriorate.

Mr. Scott's last paragraph needs little comment. His statement that "we have . . . the know how" is definitely not true. If it were even partially true, the electronics problem would not be the item of major concern that it it today.
These comments could be concluded at this point, but the gravity of the electronics problem warrants additional comments, particularly on a phase of the problem not usually given much consideration.
Directly or indirectly, the government is spending hundreds of millions of dollars annually on research. This program continues to develop new and extremely complex items, all of which may or may not have direct applications in the Fleet. In any event the present economy program prevents development and engineering required to bring these items to the stage of practical usage and replacement of obsolescent equipments pres-
ently in the Fleet. In other words the Navy has, behind an economic dam, an expanding high potential of completely stra da, and pletely strange and complex electronic items of all kinds. A sudaden outh the Navy will face the necessity of using a median ef news of using a These equipments will be little better than "bread baard" These equipmens will bead board layouts because the time element will not permit the The maing The maintenace problem will be stagering. To meet this problem, the equipments must be maintained by personnel who have actually had a part in their development and engineering.
It is this writer's firm conviction that a truly prepared Navy must not only solve the relatively minor problem of maintaining its present equipments in satisfactory condition, but it must also have enough technical talent con
 only be met by a group of highly skilled technical only be met by a group of highly skilled technical between ships of the Fleet and laberatories and factories between ships of the Freet and laboratories and factories ashore. On sea duty, these officers must be capable of maintaining all electronic equipments at peak performance, and on shore duty they must be capable of contributing to the design and production of new equipments, thus providing a very desirable liaison between designer and consumer
If the Navy should elect to solve tomorrow's problem in some such fashion as indicated above, today's problem would cease to exist.

This is the third in a series of discussions devoted to describing the operational and electrical characteristics, capabilities, and limitations of units and combinations of units utilized in the Mark V IFF/UNB System. In previous articles on this subject we have endeavored to present the general aspects of the entire Mark V IF ystand and onents of IFF Sym. Throughot por any ssemblies lheugh little hase made interconnection assembles atthough little has been written concerning their operation and importance in any Mark Ir System. This discussion will embrace the electrical and to a certain degree, the operational features of two dif ferent types of interconnection assemblies. It is pointed out that even though a Mark irF combination can be composed of only an I-R with associated display, or an I-R associated with a radar, the full operational capabilities are not realized until some type of interconnection assembly is interposed between the radar and the $I-R$. These units afford certain advantages which are not available otherwise, as the reader will find when he completely understands the many ramifications of a Mark V IFF System.
There are three basic types of interconnection assemblies currently employed in Mark V IFF installations 1-AN/UPA-9. 2-AN/UPA-15. 3-AN/UPA-16 The first of these two were chosen for a detailed description since it is believed that if the reader digests the operation of both of these, he will have no trouble in understanding the operation of the latter. However, the AN/UPA-16 will be briefly described so that the tech nician will have as complete a picture as possible of all three units.
Interconnection Assembly AN/UPA-9
The Interconnection Assembly AN/UPA-9 is com posed of two major units, IP-9 (XN-1)/UPA-9 Indi cator and $\mathrm{SN}-50(\mathrm{XN}-1) / \mathrm{UPA}-9$ Synchronizer, hence nections between the two units and connections to other
forth referred to as the Indicator and Synchronizer re spectively. Figure 1 is a block diagram of the inter-con components utilized with the UPA-9. The equipment is

FIGURE I. Interconnection Display Assembly, AN/ UPA-9, showing relationship of units and all majo interconnections between them and to external units operated with the assembly.
designed to operate with a selected radar, an Interrogato Responsor, and a directional I-R antenna. It is designed to provide the following: (a) Complete control of the associated Mark V IFF System, includion tenna. (b) Complete which the Mark ${ }^{(1)}$ (c) Combinations Ba IFF, bearing information. (c) (d) A A A and strobe signals for PPI display. (d) Interconnecting terminals for the Mark Systm. In a previous article there was presented a general description of the UPAbut for purposes of refreshing the reader, certain per tinent details are repeated herein.
The UPA-9 has control of all interrogation modes IFF, PI, and FLI. EMER replies and PI replies are decoded and converted to characteristic EMER and PI signals for PPI display. Slow-code information can also
e taken from all replies and read by the use of earphones or loudspeakers or observed visually on the Indi-
cator A-scope. Radar or identification signals can be
 he Indicator or on the associated PPI (VJ). Ranging of signals is accomplished by a strobe (range gate) which an be positioned along the sweep with a calibrated range crank incorporated in the Indicator. This strobe signal can also be used to trigger a fast sweep (expanded sweep) about 15,000 yards in length, thereby making it possible to view just a portion of the operating range. Control of the IFF antenna can be selected by this equipment, there being three methods of antenna control; 1 Slave to the associated radar. 2-Manual control through he medium of the bearing cursor on the associated VJ. 3-Automatic variable rotation from the Indicator. The IFF antenna can be rotated in either TRUE or RELATIVE bearing. The Mark V system of which the UPA-9 is a component can be operated purely as an identification system entirely separated from a radar equipment through a switching arrangement on the UPA-9 Indicator. When operating in this fashion, the equipment becomes self-triggering. Briefly the AN/UPA-9 components perform the following functions, listed under Indicator and Synchronizer, respectively:
Indicator:
(1) Counts down radar triggers
(2) Delays and chops counted-down triggers for I-R operation.
(3) Provides triggers for PPI repeater (s).
(4) Generates A-scope sweep and intensifying voltages. (5) Generates strobe signals.

6) Provides calibrated variable delay for strobe signal (ranging)
(7) Provides video and sweep switching to display both Radar and IFF signals on A-scope.
(8) Controls interrogation.

Synchronizer:
(1) Accepts only PI and EMER replies which are correctly arranged in accordance with Mark V IFF/UNB requirements.
(2) Decodes accepted PI and EMER replies for PPI display.
(3) Amplifies and mixes radar video, IFF video, decoded PI, decoded EMER, and strobe video for PPI display.
(4) Widens plain IFF replies for PPI long-range scales to afford better signal-to-noise characteristics.
(5) Accepts IFF signals within the strobe (range gate) for slow-code reproduction.
(6) Generates audible buzz from IFF signals within the strobe.
(7) Discriminates IFF pulse-widths lying in the strobe.
(8) Generates audible signals from discriminated IFF signals.
(9) Generates azimuth gate from radar and IFF antenna synchro information
(10) Provides d-c voltages for the indicator with the exception of high-voltage for the A-scope.
(11) Provides system interconnecting terminals.

Indicator

Figure 2 is a functional block diagram of the Indicator Unit which will be used as a basic reference throughout

the functional explanation of this unit. The incoming radar triggers enter the unit at J-110 and are coupled direct to switch S-119. Note that some plugs, jacks, and terminal numbers are underlined while others are not. Throughout the UPA-9 equipment the policy followed is that where a number is NOT underlined the signal (trigger, video, or synchro) is indicated as entering that unit, while an underlined number indicates the signal is leaving that unit. S-119 is included in the unit ignal is leaving that unit. S-119 is included in the unit
to permit by-passing the UPA-9 when it is desired to to permit by-passing the UPA-9 when it is desired to utilize the associated PPI (VJ) as a straight radar re-
peater and not with the Mark V IFF system. When the peater and not with the Mark V IFF system. When the
UPA-9 is switched into the system, the incoming trigger is passed through $\mathrm{S}-119$ to $\mathrm{S}-109 \mathrm{~B}$. As mentioned is passed through S-119 to S-109B. As mentioned
previously, the UPA-9 can be operated with or without previously, the UPA-9 can be operated with or without
radar triggers. When operated with radar triggers the radar triggers. When operated with radar triggers, the incoming trigger is amplified in V-101, coupled through a transformer and applied to a blocking oscillator (V-102) which is operating as a single swing by virtue radar triggers, $\mathrm{S}-109$ cuts off the incoming red without and switches the 24 -volt bias out of the grid circuit of the blocking oscillator, simultaneously switching in additional resistive color, simulta rional terate a free-running blocking oscillator V-102 has pore o op PPI trigers, and the is ther followe f 109 to row V-103 provides two -
 is normally not utilized except in special circumstances. andiny not utilized except in special ciramstances. tiver $\mathrm{V}-104 \mathrm{~A}$ before application to V-104B V 104 A and B a both biased to cut off by a voltag divider ben B When the blow divider between $\mathrm{B}+$ and gromd. Wha the blocking oscillator is triggered by an incoming trigger pulse its grid will be driven to a negative value through the grid winding of the blocking oscillator transformer and the R-C circuit will hold this negative charge for a certain period of time. No other incoming pulses will trigge the blocking oscillator until the charge leaks off sufficiently to allow a new cycle of events to occur in the blocking oscillator. Since the incoming triggers must be of sufficient amplitude to overcome the negative bias on trol R (trol R-120 (front panel control) can be adjusted to provide pulses in the region of $150-\mathrm{pps}$ which is the optimum number for best operation. However, the countdown rate will always be a submultiple of the incoming pulse rate as a definite time has to elapse between each swing of the blocking oscillator. The above statements are true only when operating with radar synchro-
run" by placing S-109A in the ON position, full amplitude triggers are delivered to the countdown blocking oscillator because S-109C effectively by-passes the count down control and the countdown circuit will trigge with each incoming pulse. Obviously, the repetition rate of $\mathrm{V}-102$ is adjusted for optimum reception rate when operating as a "free run" circuit which does not overload the countdown circuit. Still a third variable is possible in this circuit, when operating in the MANUAL position in this circuit, when operating in when S-116 (18) is placed in the MAN position an additional capacitor $\mathrm{C}-115$ is placed in parallel with C-114 and R-131 which effectively limits parallel with rapetition rate of the countdown blocking oscillator to between 75 and 125 pps .
When the incoming pulse rate becomes excessive (500 to 1000) with the space between pulses smaller, a tendency to jitter would exist at some fulses smaller, countdown oscillator might be triggered countes. For example if the incoming red on adjacen 810 pps the countdown circuit might jitter between 135 and 152 pps or between the 5th and 6th submultiples To offset this possibility a "detent" circuit, $\mathrm{V}-105$, is employed. This "detent" circuit is nothing more than an automatic biasing circuit which, in effect, wore the vit aut present on the grid of the countdown trigger tube, $\mathrm{V}-104 \mathrm{~A}$ If a pulse rate is stabilized ond no taking place, the countdown trigger will be operating, for example, on the 5th submultiple, so that the output repetition rate will be correct for the system. If the pulse rate tends to increase, the automac bircuit $\mathrm{V}-104 \mathrm{~A}$ to a point where the countdown will be trid of ing the Gth submultiple rather than the 5th in order ing the output repetition rate correct The ir to can be un submultiple and thereforticular coundo in incoming pulse retitiore requires large change in incors pulse repetition rate to over come the regenal a circuit to lock on the next higher or next lower submultiple, de pending on increase or decrease of incoming pulse rate. The countdown blocking oscillator has two outputs, one to the I-R trigger delay circuit and the other to the radar trigger amplifier. For the time being we will fol low out the primary trigger channels, although the entire system interlocks and eventually all subsidiary circuits will be considered. The output counted-down pulses from the countdown oscillator are delivered to the grid of V-115A. V-115 is a conventional one-kick multivibrator except that an adjustable bias circuit is connected in the cathode circuit. This adjustabl is the form in the cathoce circuit. This adjustable bias is in the form of a diode using a potentiometer (front panel control) as a cathode resistor. The overall function of the delay
multivibrator in conjunction with the diode is to afford a multivibrator in conjunction with the diode is to afford a
front panel control for delaying the front panel control for delaying the triggers to the I-R
certain amount of time in relation to the basic radar riggers. As can be seen from Figure 2 the delay multi-
ibrator is out of the circuit when operating in MANUAL the application of a 105 -volt bias through S-116 (13) to the grid of V-115B. In this connection the agers are generated in the countdown oscillator, amplified in V-106B and coupled through V-116A to the trigger tube blocking oscillator $\mathrm{V}-119$. In the other two conditions (radar and emer) V-116A is cut off by a 105 -volt bias applied through S-116(15). However, in these two conditions, the output of the delay multivibrator, differentiated, will overcome the bias on the trigger tube and blocking oscillator $\mathrm{V}-119$, generating 2.5 -microsecond trigger pulses for delivery to the I-R. Since the UPA-9 is a single-mode system (only one mode of challenge at any time) provisions are made for interrupting the triggers to the I-R which will effectively "chop" the display on the associated PPI or A scope. the chopping is effected in this equipment by a multiamount of chop is exercised from the front panel by a

Chop Rate Control." The chopping multivibrator is a free-running square wave generator with the two halves of the multivibrator connected through cathode followers. The actual multivibrator is $V-117$ and the coupling tube V -118. Direct coupling is used between the multivibrator tube sections and their cathode followers, hence the cathode followers are operated between +300 volts and ground and the multivibrator tube sections are operated between ground and - 305 volts. Voltage dividers are used in the cathode circuits of the follower tube to obtain optimum feedback voltage. The chop rate is controlled by adjusting the bias on V-117B through a front panel control.
Since IFF and radar signals are displayed alternately on the Indicator A-scope, an Eccles-Jordan or flip-flop multivibrator is utilized to provide this switching between the two. The operation of the flip-flop is indicative of zero range for both IFF and radar signals, therefore its output is used for triggering sweeps, triggering the ranging circuits, shifting the base line of the Indicator A-scope, and gaiting the IFF and radar video amplifiers.

FIGURE 3. Schematic diagram of the gating circuits included in the Indicator Unit of the AN/UPA-9 Interconnection Assembly.

From Figure 2 we see that the cycling of IFF and radar displays is controlled by the countdown rate, therefore the timing of radar triggers (not to be confused with radar synchronizing pulses) is taken from the countdown blocking oscillator $\mathrm{V}-104 \mathrm{~B}$. These triggers are fed to amplifier $\mathrm{V}-106 \mathrm{~B}$, which is the radar trigger tube, its output being used to trip the flip-flop to the radar position. The timing of the IFF display is based on the second pulse of the paired pulses generated in the I-R This pulse is shown entering the Indicator at J-104 on Figure 2. These incoming I-R second pulses, hereinafter referred to as DISPLAY TRIGGERS, are applied to the cathode (1 6) and the grid (pin 1) of $\mathrm{V}-133$ the second pulse mplifier (Figure 3). In Padar and Emer second P V 133 A is biased beyond cutoff by a - 105 per 11 A -10 rats on hat stage. Howere, V . 33 B is conducting and the positive pulses applied to the cathode will cause a posi tive pulse to be developed in the plate circuit (pin 5)
 (pin 1) of the 1FF blocking oscill V a since pin 1 af 5 V 132 a tive trigger on grid 1 will cause the oscillator to cycle

and generate a pulse in the catnode circuit. When in MANUAL operation V-132A has additional bias (-10 off. Thus this stage will not operate even when the positive pulse from $\mathrm{V}-133(\mathrm{~B})$ is applied to its grid However, the reader will note that V-132B cathode (pin 6) is switched from a +24 volt bias to ground when the equipment is switched to manual. This makes V-132B a free-running blocking oscillator, gen erating triggers in the cathod crait as in EmER operation. Also note that V-133A is opened to permit the display triggers to pass through and gen erate a negative pulse in the plate circuit which is use to trigger the main multivibrator V-109A which will be discussed later During the periods when the I-R be discussed late. During the periods when the I-R triggers are OFF due to the action of the chopping multithe trigger delay circuit, coupled through V-116B
 cathode fow and appled to $V-133$
Thus we have explained the generation of flip-flop and trigger voltages both in RADAR/EMER and MANUAL operate $\mathrm{V}-132 \mathrm{~B}$ are coupled to B . Amplifier, V-106 (pin 1) while the
-104 are coupled to V-106 (pin 4). Both V-106A and $V-106 \mathrm{~B}$ are disabled for approximately 3300 microeconds after each triggering pulse through a feedback circuit from the flip-flop multivibrator which is triggered by the outputs of V-106. Individual cathode bias adjustments in the cathodes of V-106A and V-106B provide triggering and spacing adjustments. The technician is cautioned not to attempt adjustment of these controls unless he has been properly instructed as to the proper procedure.
The IFF and/or radar triggers from the flip-flop multivibrator V-107 or the second pulse amplifier V-133, are coupled through a trigger amplifier, $\mathrm{V}-108$, to the long gate multivibrator V-120 (Figure 4). When the long gate multivibrator is tripped to the ON position it will be held ON until the ranging circuit has completed its time cycle, determined by the position of the Strobe (range) Crank. An examination of Figure 4 will show that the ranging circuit as a whole is a Phantastron Ranging Circuit and operates on the same principle as that ing Circuit and operates on the same principle as that
described in the November 1945 Electron, with slight described in the November 194s ELECTRON, with slight
modifications. A Range Helipot is the variable element in the ranging system and experience has found one
ault in this unit. If jammed hard against the stops, he runner is inclined to jump the track and a complete isassembly is necessary to replace the unit in operation. Operating personnel and technicians are cautioned to ande this portion of the unit with a moderate amount me and order to avoid several
Figure 5 is the schematic of the wide/narrow strobe generator and strobe output circuits. The strobe generator circuit is triggered from the ranging circuit (Figure 4), the trigger being applied to a one-kick multivibrator V-134 whose output gate is approximately 50 microseconds in duration, adjustable by a bias control. The generation of the narrow strobe is accomplished by atilizing the differentiated leading edge of the wide strobe to trip a short delay (10 to 15 microseconds) multivibrator. The output of this multivibrator is differentiated and in turn triggers a one-kick multivibrator whose time duration is 10 microseconds. This 10 -microsecond pulse is used as a narrow strobe in the Indicator. The purpose of the delay (10 to 15 microseconds) multivibrator is to facilitate centering the narrow strobe in the wide strobe. The output of either the wide or narrow

FIGURE 5. Wide/Narrow Strobe Generating and strobe output circuits of the Indicator Unit of the AN/UPA-9 Interconnection Assembly.
strobe generators is selected by a front panel control This switch permits passing the desired strobe to the passed through an amplifier which by virtue of zero bia applies a limiting action and in effect sharpens the strobes before their application to the scope. Facilities are provided for mixing the strobe outputs with the radar and IFF video signals for presentation on the radar and IFF races of the A-scope respectively. In addition the strob traces of A-scoph plugs, jacks, and consial strobes re coupled thrope plugs, jacks, and coaxial cable to the associated PPI for use with the video presentation on hat unit.
V-109 is the main multivibrator which provides the -cesary gates for the various Indicator scope rages. This circuit in conjunction with the sweep generato V-112 generates either $20,40,80$, or 200 mile sweeps plus an expanded sweep of approximately 15,000 yards, see figure 2.
All operating controls for the entire UPA-9 (ap proximately 30) are located on the Indicator Unit. Thes controls operate both in the Indicator and the Synchronizer, but since the Indicator is located in CIC, it is obvious why all are grouped on one unt. In addit to these controls, the operator has jurisdiction over the various control boxes for the Interrogator-Responso which is operated with the UPA-9 Assembly

Synchronizer

The second unit of the AN/UPA-9 Interconnection Assembly is the Synchronizer. In general, this unit per forms the following functions:
(1) Decodes PI and EMER video signals.
(2) Mixes video signals for presentation on the PPI scope (s)
(3) Generates audible slow code signals for reading on loudspeaker or headphones.
(4) Generates azimuth gate for use when operating in MANUAL.
(5) Contains power supply circuits for the entire UPAexcept the A-scope power supply.
Figure 6 is a functional servicing block diagram of the Synchronizer and, as in the case of the Indicator, will be the basic diagram for reference throughout the detailed description which follows. The I-R video is introduced into the Synchronizer at J-401 and is coupled to the grid of video amplifier V-401B. Note that a potentiometer ($\mathrm{R}-402$) is included in the input circuit. This potentiometer is screw-driver controlled and operates to adjust the amplitude of high-level video signals. If the incoming video signals are above 0.5 volts or less) a relay which is operated from the Indicator will eliminate the sensitivity control and apply the video signals at full amplitude to the grid of V 401B , The original decoder amplitude to the grid of V -1B. The origal decoder sensitivity adjustments are made, or should be, by the attempt adjustments in this circrit catione no oughly familiar with the circuit unless they are necessary to do so. Figure 7 is and the PI and EMER Decoder Circis 1 ma bed as the PI and EMER Decoder Circuits and may be used a detailed reference while following the operational dis The negative outp
The negative output from - V-401B is applied to a limiter stage which limits by cutoff in the grid circuit. The positive video from V-402 is applied to a driver whose output feeds the first coincidence gate/amplifier $\mathrm{V}-405$. The driver is transformer coupled to provide an undelayed video signal to the screen grid of $\mathrm{V}-405$ and a delayed (8-microseconds) video signal to the control grid of V-405. Thus when a PI video signal is received it will be converted to a single pulse in the coincidence gate and applied to a single swing blocking oscillator

FIGURE 6. Functional Servicing Block Diagram of the Synchronizer Unit of the
 circuits of the Synchronizer Unit of the AN/UPA-9 Interconnection Assembly.

V-435A, with a pulse forming line (W-402) in the grid circuit designed to generate a pulse 2 microseconds in duration. The output of V-435A is applied to a PI pulse gate circuit (a one kick multivibrator) which generates a gate (wide pulse) approximately 15 to 17 microseconds in duration. The output of the multivibrator is applied to the PI amplifier V-424B. Note, however, that the output of the PI blocking oscillator V-435A is split between the PI pulse gate circuit and a second coincidence gate/amplifier V-408. One output from $\mathrm{V}-435 \mathrm{~A}$ is coupled direct to the screen grid of $\mathrm{V}-408$ while the same output is passed through a driver, $\mathrm{V}-407$, and a delay circuit to the control grid of $\mathrm{V}-408$. This coincidence gate operates in the same manner as the first coincidence gate except that a long pulse is generated in the plate circuit by virtue of a long-time constant integrator composed of C-415 and R-435. This integrated waveform is applied to the grid of V-407B and cuts the tube off for approximately 40 to 50 microseconds, developing in the output of $\mathrm{V}-407 \mathrm{~B}$ a positive pulse of the same duration, which is applied to the EMER amplifier V-425A
To clarify any misunderstanding regarding the usage of the above-described circuits, let us digress for a
moment. Recall that PI video replies are 2 pulses spaced 8 microseconds apart while EMER replies are 4 pulses spaced 8 microseconds apart. One of the basic reasons for having PI and EMER, particularly the latter, is to instantly spot those replies when they appear on the PPI. Thus it was necessary to make them decidedly more outstanding than conventional replies. To accomplish this, the individual multiple pulse replies are transformed into long video blocks for presentation on a PPI. Thereore it can be seen why and how the coincidence amplifier/gates are utilized in the circuit. The PI gate eliminates the first of the two paired pulses and decodes on he second, while the EMER gate eliminates the first and second of the four pulses and decodes on the third.
In addition to the PI and EMER channels, the incoming I-R video is applied to the IFF amplifier (V-411) and through a limiter (V-412) to a cathode follower output stage (V-413). The cathode follower output is divided, one channel to the IFF video section and the other to the audio oscillator circuit for generating audible slow code. The channel to the video section provides an I-R video source for the A -scope on the indicator and also presents the choice of either unwidened (normal) or widened IFF pulses for the associated PPI.

The unwidened signal path is from V-413 to the grid of $V-425 \mathrm{~B}$ direct. The widened signal path is from $\mathrm{V}-413$ diagram of the video amplifiers, mixer, and widening diagraits. The IFF video applied to V-422 is widened
circuin in the input circuit by virtue of a variable long time constant circuit composed of C-485, R-516, and R-515. R -515 is acrew driver control located on and R-S15. -sis a screw she nizer chassis and is the circuit. Again the technician is cauioned to adjust this coint of a justment is incestred she to the fact that pove a cetain point in widening the signal to noise , a me will peres ratio becomes
In addition to the I-R video input to the Synchronizer there are three other inputs, exclusive of synchro information. They are: 1-Radar Strobe. 2-Radar Video 3-Wide/Narrow Strobe. The radar strobe is applied oo a strobe amplifier V-424A. By observation of Figure 6 it can be seen that the plates of the IFF widener (V-422), the Radar Amplifier (V-423) Strobe Amplifier (V-424A), PI Amplifier (V-424B)

EMER Amplifier (V-425), and the IFF Amplifier (V425B) are tied together to permit mixing the various videos for presentation on the PPI. The radar video i brought into the unit and applied to a switch which controlled by relay K-401 (control exercised from the Indicator). When operating the associated PPI in conjunction with a radar only (no IFF system in use), the radar video is by-passed through the Synchroizer by putting the switch putting the switch on the BY-PASS UPA-9 position on
the Indicator. The circuit may be traced on Figure 6 When operating in conjunction with an IFF system and a radar the switch is placed on THRU UPA-9 which mixes the radar video with the I-R video for presenta tion on the associted PPI and at the same time provide tion-on the a radar
The Wide/Narrow strobe input is used in conjunction with the I-R video to generate slow code signals to be monitored on a loudspeaker or in a pair of headphones The I-R video from V-413 is applied to the contro grid of the strobe gated amplifier $V-415$. This stag is normally biased beyond cutoff thereby preventing any is normally biased beyond cutoff thereby preventing the

positive strobe gate is applied to the suppressor grid. One output of the strobe gated amplifier is to trigger the BUZZ generating circuit which is essentially an integrator, roducing a long puise for each pulse or series of pulses received. This audible BuZZ is delivered to the Indicato through the buzz cathode follower and a coaxial cable A second output of the strobe gated amplifier is to trigger a blocking oscillator and cathode follower whose function is to generate pulses corresponding to dots and dashes which are used to key an audio oscillator to produce the morse code equivalents for audible reading. The so-called "Fruit Killer" (V-421A) withholds output from the audio oscillator for approximately 0.025 second at its start, so that fruit (interference and unwanted signals or voltage excursions) will not produce an output and only slow code from regularly occurring pulses of 40 pps or greater will be heard.

Azimuth gating voltages are used to blank the radar trace of the Indicator A-scope (in manual operation only) when the IFF and radar antennas are out of agreement by an angle selected by the operator. These greeng litait consisting of V-0. 0 V V .
 by comparing with corresponding ing them to the grids of rediers, and mixing them. So long as all voltages remain in the same relationship, no gating voltage will be produced. The degree of angular displacement between the two and hecessary to develop a gating voltage is determined by the amount of bias on V-410. Mis bias is of the Azimuth Discriminator Control located on the Indicator. From Figure 9 we

FIGURE 9. Azimuth Gating Circuit of the Synchronizer FIGURE 9. Azimuth Gating Circuit of the Synchroniz
Unit of the AN/UPA-9 Interconnection Assembly.
voltages pass through T-405 and are isolated as two separate voltages. In a similar manner, the I-R synchro voltages pass through T-404 and are separated into two voltages. One of the radar voltages is connected in series with one of the I-R voltages. The two transformers are connected so as to cancel when the systems are in angular phase. If they are not in phase, the re-
sultant voltage is applied to the grid of V-410B. A second pair of voltages from the two synchros are connected similarly and applied to the grid of V-410A. $\mathrm{V}-410 \mathrm{~A}$ and B plates are tied together and any dissimilarity between syinchro voltages will be rectified and will appear as a $\mathrm{d}-\mathrm{c}$ component in the output of $\mathrm{V}-410$. This output is applied to a d-c amplifier $\mathrm{V}-409 \mathrm{~B}$ and subsequently applied to cathode follower output V409A.
The Synchronizer contains four power supplies which provide 1300 volts regulated, +300 volts unregulated, +290 volts unregulated, and bias voltages ranging from -140 volts to -5 volts with the -105 volt supply being regulated. These voltages are used in both the Synchronizer and the Indicator for B supplies and biasing voltages.

Interconnection Assembly AN/UPA-I5

This interconnection assembly was designed to provide simultaneous availability of all three modes of interrogation used in the Mark V IFF/UNB System. This assembly is used in conjunction with the high-powered Interrogator-Responsor AN/CPX-3 to provide a very flexible, multi-control presentation, IFF arrangement. Actually simultaneous interrogation is misleading because the three modes are made available to any of six remote stations through the principle of time-sharing of interrogations and replies, however this will be described in detail later in this discussion. The AN/UPA-15 performs three major functions; 1-Accepts synchroizing pulses from the associated radar generates and delivers triggers in all three interrogation modes to the Interro-gator-Resporsor on time-sharing basis 2 Separates the I-R vides into four separate chor for presentations 3 Provides control at ach on remote emote presentaio for selecting the mode inter aration and lesired for that paticula pentation rogation and reply desird for that 1 ish lo le cicuitry which will be cored in graphs.
Figure 10 is a block diagram of the entire Interconnection Assembly AN/UPA-15 showing the relation of all units in an interlaced challenge system. Figare (a unit of郎 ceipt of a synchronizing trigger from the parent radar. For each synchronizing pulse, delayed triggers (delay controlled by the master control operator) are generated in three channels for triggering the I-R. Simultaneously with trigger generation, triple positive gates are generated which act as gating voltages to pass the triggers (in groups) to the I-R on one channel at a time. The total number of triggers supplied to an I-R equals the number of synchronizing pulses received by the Synchro-

nizer, but the average rate on any one channel is one third of the input synchronization rate. Thus, the I-R receives a group of triggers, at the synchronization rate, on the IFF channel, followed by an equal number on the PI channel, and then the same number on the FLI channel. The number of consecutive triggers in each channel is controlled by the countdown ratio of the Synchronizer, which can be adjusted to $1: 2,1: 3,1: 8$, $1: 16$, and 1:32 with an input pulse rate of 360 pps . In addition to the positive gates for enabling the trigger circuits, the Synchronizer generates negative gates of equal length for use in the Video Separator and Decoder to enable the corresponding channel in that unit. Thus when the I-R is challenging in a certain mode, say IFF, the IFF channel only is enabled in the Video Separator and Decoder and allows no other mode signals to pass through during the IFF challenge period.
The incoming synchronizing pulses are applied to a trigger-blocking oscillator combination (Figure 11) to sharpening and application to the countdown multivibrator. This blocking oscillator may be operated as a single swing when external synchronizing pulses are being received or as a free-running oscillator when the unit is switched to self-triggering. When operated on self-triggering the repetition rate can be varied by a front panel (screwdriver) control from about 60 to 400 pps . The output of the blocking oscillator is used to trigger

FIGURE II. Functional block diagram of the Synchronizer Unit of the Interconnection Assembly AN/
he countdown multivibrator whose time constants can be varied by a switching arrangement to permit a choice of five count-down ratios; $1: 1,1: 2,1: 4,1: 8$, and $1: 16$. on the selecount-down ratio is set on $1: 4$ (position 3 to generate a gate on each fourth pulse with the length of the gates equivalent in time to that between four trigger pulses. To insure that there will always be an over-all countdown of at least 1:2, a flip-flop multivibraor is included in the circuit immediately following the countdown multivibrator. This flip-flop effectively muliplies the countdown ratio of the countdown multivibrator by two in all cases and at the same time reduces the duty cycle of the following delay gate, $\mathrm{V}-107$. Since it is necessary to have the gating change occur during the retrace time of the PPI sweep, this gate would have to be on longer than the sweep time, which would result in a duty cycle of over 80% if the countdown were 1:1. Thus by virtue of the flip-flop we establish the originally stated ratios of $1: 2,1: 4$, etc. The output of the flip-flop, as in any conventional flip-flop circuit, is a series of positive and negative square waves. The output is differentiated resulting in a series of positive and negative pips which are applied to a trigger tube, biased to cutoff by a positive ath bias. Thus the positive triggers will positive cathode bias. Thas the positive triggers will pass through the trigger stacA in Figure 11 is a limiter lime to limit the amplo of rigger so that all P . The uniform in amplide. The delay gat,,-107 , is in luded in the so that the chage of nizing pulses so that the change-over of the blanking
waveforms, which are generated later occurs between the end of the longest sweep on the PPI and approximately 300 microseconds before the next radar synof flaz-top positive pulses at of the delay gate is a series of flat-top positive pulses at the counted-down repetition rate, with the duration of the pulses determined by the setting of a delay control which is a screwdriver control. These flat top pulses are differentiated and applied to a trigger amplifier which reverses polarity and amplifies. The resulting output is a negative pulse fol lowed by a positive and is applied to a trigger tube $\mathrm{V}-108$, both sections of which are biased beyond cutoff. Thus the outputs of both sections of $\mathrm{V}-108$ are negative pulses with greater amplification in the B section than in the A due to circuit components.
The next circuit in the line (Figure 12) is rather unique in its arrangement, consisting of three complete Eccles-Jordan (flip-flop) multivibrators operating from a single trigger source. Note that all plate resistors of the flip-flops are returned to ground and the cathodes are connected to a - 105 volt supply. This is done to normal operation, two of the three A-sections of the flip flops are cut off and the other is in full conduction. Conversely, one of the B-sections is cut off and the other two in conduction. When the equipment is first nergized, there are eight possible combinations of con duction the mar "Trip the" Only two for may 1 . of these, however, require special consideration. The Under these conditions, V-108B (trigger tube) is pre vented from passing triggers by a negative grid bias,

FIGURE 12. Detailed schematic diagram of the triple Eccles-Jordan (flip-flop)
multivibrator gate generating circuit-"Trip-flop."

developed across the plate loads of the A-sections and applied to the grid of V-108B. This bias is maintained so long as any one of the A -sections are conducting. The first negative trigger from the plate of V-108A is applied to all three A-section grids, cutting off the Asections and reducing the circuits to the equivalent of the second starting condition, with all three A-sections cut off. In this condition V-108B has no grid bias from the "Trip-flop" and the next positive pulse from V-106B, applied to the grids of V-108 results in negative pulses to the grids of V-109A, V-110A, and V111A from V-108A. In addition a negative pulse is applied to the grid of V-109B from V-108B. However, as pointed out previously the pulse from $\mathrm{V}-108 \mathrm{~B}$ is larger in amplitude than that from V-108A thus V-109B is cut off and $\mathrm{V}-109 \mathrm{~A}$ becomes conducting which places bias on the grid of $\mathrm{V}-108 \mathrm{~B}$. This bias is maintained so long as any of the A-sections are conducting. The so long as any of the A-sections are conducting. The
"Trip-flop" is now in a condition for normal operation. "Trip-flop" is now in a condition for normal operation. The next tigger from -A-section grids, cutting off $-109 \mathrm{~A}(\mathrm{~V}-110 \mathrm{~A}$ and dive ductive. The resulting voltage drop at the plate of $V-$ 109B (Figure 13) is conled to the grid of $\mathrm{V}-110 \mathrm{~B}$ causing V-110 to flip over. The voltage rise at the

IT IS ASSUMED, THAT AT THE START,
$v-109 A, v-1108$ AND $v-111 B$ ARE CONOUCT
$v-109 A, v-1108$ AND $V-1118$ ARE CONDUCTING,
$v-109, v-1110 A, A N D V-11 / A$ ARE CUT OFF
$\underset{\text { PLATE V-IOBA }}{\text { TRIGERS }} \sqrt[7]{ } \sqrt[7]{\sqrt{7}}$
GRID $v-109 A_{1}^{-1}$ \qquad \square

plate of $\mathrm{V}-110 \mathrm{~B}$ is coupled to the grid of $\mathrm{V}-111 \mathrm{~B}$ but has no effect because $\mathrm{V}-111 \mathrm{~B}$ is conducting. In a similar manner, the second negative trigger cuts off $\mathrm{V}-110 \mathrm{~A}$, causing the tube to flip over. The voltage drop at the plate of V-110B is coupled to the grid of V111B causing it to flip over. The voltage rise at the plate of V-111B has no effect on V-109B because this tube is conducting. In the same way, the third pulse causes V-111 and V-109 to flip over. From Figures 11 and 13 it can be seen that the negative gates from the plates of $\mathrm{V}-109 \mathrm{~A}, \mathrm{~V}-110 \mathrm{~A}$, and $\mathrm{V}-111 \mathrm{~A}$ are supplied to the Video Separator and Decoder (through 150,000 ohm resistors). If one or more of these leads are grounded beyond the isolating resistors the flip-flops will continue to operate. The positive gates from the plates of V-109B, V-110B, and V-111B are coupled through 220,000 -ohm resistors to trigger tubes $\mathrm{V}-114 \mathrm{~B}, \mathrm{~V}-115 \mathrm{~B}$ and V-116B for unblaking in sequence the blocking oscill It will be noted frome the $1-\mathrm{R}$ synchronizing pulses. the input blocking oscillar $\mathrm{V}-102 \mathrm{~A}$ is coup saw input blocking oscillator -102 A , is coupled to $\mathrm{V}-112 \mathrm{~B}$, Ther circuit - 12 B . Mhis circuit generates a linear sweep approxi radar sychronizg pise dar trigger when operating as a self-triggered unit. This saw-tooth voltage is applied to the plates of diodes V-114A, V-115A, and V-116A. The cathodes of these

PLATE V-IIIB \qquad PI PI 01. FIGURE 13. Idealized waveforms generated at various points in the "Trip-flop" gating circuit of the Synchronizer Unit of the Interconnection Assembly AN/-UPA-15(XN-21).

FIGURE 14. Idealized waveforms illustrating the timing of I-R triggers and equalization of code spacing in the Synchronizer Unit of Interconnection Assembly AN/-
UPA-I5(XN-21).
three tubes are connected to a bleeder which includes a 10,000 -ohm potentiometer located in the Master Contro Box designated iff delay. This control is designed in such a manner that the cathode voltages of the three diodes can be varied but still maintain constant the voltage differences between them. As can be seen from Figure 14 as the delay control is moved, the pick-off point for the three diodes is changed, thus providing a method of delaying the I-R triggers in respect to the synchronizing pulses.
As the sawtooth waveform is applied to the three diode plates, a sawtooth waveform is generated in each cathode as the conduction point is reached. This wave form will correspond to that part of the plate waveform of each tube above the conduction point. Although these pulses differ in amplitude by the amount of cathode voltage difference, they will be differentiated to form flat-top pulses of equal amplitude but of different duration. This flat-top pulse is again differentiated to form the characteristic positive and negative pulses which are applied to the grids of the trigger tubes $\mathrm{V}-114 \mathrm{~B}$ $\mathrm{V}-115 \mathrm{~B}$, and V-116B. Only one of these stages will be unblocked at any instant by virtue of application of the positive gate from the "Trip-flop." While one trigge tube is unblocked, the other two are cut off, thus only one mode of triggers can pass until the next change in the "Trip-flop" waveform cuts that trigger stage of and unblocks another. The outputs from $\mathrm{V}-114 \mathrm{~B}$, V-115B, and V-116B trigger the three blocking oscillators V-117, V-118, and V-119 respectively. Note that both sections of each blocking oscillator are used to permit furnishing trigger outputs on both cathodes These dual triggers are used in a special arrangement where two separate I-R's are employed such as in "High-Low" radar system where two radar antennas are

FIGURE 16. Functional block diagram of the Video Sepa rator and Decoder of the In-
terconnection Assembly AN/ erconnection As
UPA-15(XN-21).

FIGURE 15. Sequence of events showing timing between the input synchronizing pulses and the output I-R trigger pulses generated in the Synchronizer Unit
of the Interconnection Assembly AN/UPA-15(XN-21).
operated back-to-back, one for low angle detection and the other for high angle detection. In such a system, in dividual interrogation systems are required. This discussion will not cover the details of such a complex installation. Figure 15 is a diagram showing the timing sequence between the original synchronizing triggers and the resultant output triggers to the I-R.

The second unit contained in the Coordinator Assembly is the Video Separator and Decoder. This unit receives the video replies from the I-R on one common coaxial cable, and separates them into four channels, IFF, PI, FLI, and EMER so that they can be displayed individually or collectively on any or all of the remote presentations. Figure 16 is a functional block diagram showing the inputs, functions, and outputs of the unit. In addition to the video separation operation, PI and EMER replies may be decoded as explained previously for a distinct presentation on the PPI scopes. The three negative gates which are generated in the "Trip-flop" negative gates which are generated in the "Trip-flop
of the Synchronizer are utilized in the Video Separator and Decoder to unblank their respective channels. These and Decoder to unblank their respective channels. These gates have identical timing with the positive gates that are used to unblank the trigger circuits in the Synchronizer, therefore during the period that the IFF channel
is unblanked in the Video Separator, the Synchronizer is unblanked in the Video Separator, the Synchronizer is generating triggers for the I-R only in the IFF mode and the video from the I-R will consist of replies to IFF challenges only. Similarly, only PI and FLI replies will be supplied to the Video Separator when the PI and FLI unblanking gates, respectively, are present. Connections are made in the Video Separator and Decoder so that when emergency replies are received, the EMER video will be gated through the unit regardess of what mode of challenge is in use, as can be seen from Figure 16. Decoding of PI and EMER replies is accomplished in the same manner as in the UPA-9 and no further disvideo outputs, IFF, PI, FLI, and EMER are connected to individual jacks on the Video Separator and Decoder. The outputs from these jacks are carried by coaxial cable to the Display Interconnection Assembly.

The Display Interconnection Assembly of the Interconnection Assembly AN/UPA-15 contains three separate drawers, each containing two identical mixer units. In addition a Rectifier Power Unit type PP-199 (XN-
21)/UPA-15 is located in the base of the assembly. Figure 17 is a block diagram of one Mixer Unit showing the four I-R video inputs plus the radar video input. Each mixer contains five switch tubes or gates for the IFF, PI, FLI, EMER, and RADAR video inputs respec tively. Control leads, terminating in the remote control box associated with the individual mixer, allow the operator to select one or more videos for display. Normally all channels of video are blocked in each mixer by virtue of a high bias on each grid. The control circuits operate by grounding this bias either directly or through a variable resistor to permit adjustment of video gain. When the operator challenges on any one of the three identification modes, the mixer control circuit for that mode is automatically grounded and the replies of that mode channel are passed thergh appear at the output of that unit for delivery by coavial cable to the presentation associated with the by coaxial trol box being used. Other switches are prove coneach control δ ared. provided on the RADAR to prevent these vides from when it is desired presentation. Nermally the EMFR anding on the scope presentation. Normally the EMER and RADAR video mode swits are open to pass wide whereas the IFF bias is mes by the box. The EMER an RADAR video switch tube con trols are in the form switches which must be hed for the perid during which the operator wisheld on for the period for wishes to tion.

Interconnection Assembly AN/UPA-I6

The third in the series of interconnection assemblies employed in the operational evaluation of the Mark V FF/UNB is the type AN/UPA-16. This assembly perorms the same basic functions as the AN/UPA-9 and AN/UPA-15 but lacks some of the refinements and Interrogator-Responsor, and prepare the IFF replies for display on the radar scopes. It also includes features for audible and visual presentation of slow code. The entire AN/UPA-16 consists of seven major units: 1-SN-28/ UPX Coordinator Unit. 2-KY-12/UPX Audio Decoder Range Unit. 3-KY-13/UPX Video Decoder Unit. 4-SA-67/UPX Video Switching Unit. 5-C-249/UPX Challenge Control Box. 6-ID-143/UPX Remote Indi cator. 7-C-248/UPX Audio Decoder Control Box.
The remainder of this article is devoted to the two major types of test equipment utilized to maintain all units of the system at optimum operation.

AN/UPM-4(XN-2I)

The AN/UPM-4 is a transportable test equipment designed to perform any or all maintenance checks on components of the Mark V IFF/UNB System. Due to its weight and bulk it is primarily intended as a service shop test instrument, being installed as a semi-permanent fixture. However, it has been used at times as a transportable equipment for certain instanations in the Mark V IFF/UNB System, particularly those in fire control directors. The entire AN/UPM-4 is composed of an Oscilloscope Unit TS-491 (XN-21)/UPM-4, a Radio Frequency Test Unit TS-492 (XN-21)/UPM-4, a Rec tifier Power Unit PP-206 (XN-21)/UPM-4, and an Accessories Case CY-536(XN-21)/UPM-4. The first and second named units are contained in drawers which occupy a common cabinet with the Oscilloscope Unit occupying the upper half and the R-F Test Unit the lower half. The Rectifier Power Unit is in a separate cabinet which may be secured to the Oscilloscope Unit/R-F Test Unit cabinet. The Accessories Case, as the name implies, contains all the cables, fittings, probes, etc. necessary in the application of the equipment for test purposes. The design, construction, and layout of the AN/UPM-4 permits a maximum of usefulness in performing the various checks, tests, and measurements required in the Mark V IFF/UNB System. Some of the major servicing operations possible are listed below.
(1) Tests on Transpondors and Beacons:
(a) Transmitter power output.
(b) Transmitter frequency.
(c) Receiver sensitivity
(d) Receiver frequency and bandwidth.
(e) Receiver decoding.
(e) Receiver decoding.
(2) Tests on Interrogator-Responsors:
(a) Transmitter power output.
(b) Transmitter frequency.
(c) Transmitter "fast" coding.
(d) Receiver sensitivity.
(e) Receiver frequency and bandwidth.
(f) Adjustment of receiver rating waveforms
(g) Adjustment of receiver GFC waveforms.

The AN/UPM-4 is designed to operate from a 47 - to $2400-\mathrm{cps}, 115-$ volt ($\pm 15 \%$), single-phase alternating current power source.

Oscilloscope TS-491 General

The Oscilloscope Unit is the initiating unit in the (3.5-, 12 -, $50-, 500$-, and 2600 -microseconds) which may be presented on a 3 -inch cathode ray tube as an " A " type trace. The sweep frequency is dependent on the length of sweep in use, with actual repetition rates of 50 to 4100 when 3.5 -, 12 -, or 50 -microsecond sweeps are used, 50 to 1300 for 500 -microsecond sweeps, and 50 to 280 for 2600 -microsecond sweeps. The start of the sweep may be delayed from 3 to 175 microseconds with respect to the synchronization pulse by virtue of a sweep delay circuit whose use is optional. If the sweep delay circuit is switched out, the delay between synchro nizing pulse and start of sweep is less than 0.7 micro seconds. The unit also generates sweep markers of vary ing intervals dependent on the sweep in use as illus trated in Table 1 which follows.

Sueep Duration (Microseconds)	TABLE 1 Marker Interval (Microseconds)	Marker Oscillator Frequency
3.5	0.1 or 1	20 kc
12	1	10 Mc and 1 Mc
50	5	10 Mc
500	50	200 kc.
2600	50	20 kc.

The normal video sensitivity of the oscilloscope ranges from one volt per inch vertical (peak) to 20 volts per inch (peak). These ranges are controlled by five positions of a six-position selector switch. The other three ranges are 2,5 , and 10 volts per inch. The sixth position on the switch increases the sensitivity so that one inch vertical deflection is obtained when the input voltage is 0.2 volt peak.
Two types of pulses are available from the Oscilloscope Unit, suppressor pulses and trigger pulses. The positive suppressor pulses are undelayed in respect to the synchronizing pulses, and range from 10 to 30 volts amplitude when working into 500 ohms in parallel with 175 -uufd. The trigger pulses may be delayed or undelayed in respect to the synchronizing pulses. They are Iso positive pulses and may be from 50 to 100 volts in amplitude when working into 500 ohms in parallel with 75 -uufd or not less than 10 volts when working into 75 ohms in parallel with 1100 -uufd. When the trigger delay is in the 175 -microsecond position, the delag is delay is in the 175 -microsecond position, the delay is continuously variable with respect to the synchronizing pulse, from 3 to 175 microseconds. When in the 500 -
microsecond position, the delay is continuously variable from approximately 150 to 500 microseconds.

TABLE 1
Frequency
Microseconds
0.1 or 1
20 kc .
10 Mc and 1 Mc
1 Mc
1 Mc , 0.2 volt peak. 75 -uufd. The trigger pulses may be in paral

R-F Test Unit TS-492 General

The R-F Test Unit TS-492 contains the coder, radio frequency signal generator, wavemeter, demodulator, video calibrator, and the pulse counter. The coder produces positive or negative polarity pulses with variable amplitude (from 0 to 60 volts) to be used externally, and negative polarity pulses with fixed amplitude for use in modulating the r-f oscillator in the signal generator. The coder pulses simulate the interrogating and reply Pulses of the various units comprising the Mark ring Morse code but the circuitry is arranged to proating Morse code vide a choice of 1 or tion of the oper. Sen pulses are offered through the MODE SELECTOR switch, as follows:

MODE SELECTOR position	Type of Output	Pulse Duration (microsceconds)	meter Pulse Spacing (microseconds)
XMIT IFF	Paired	Between $0.7 \& 1.2$	2.5 ± 0.05 to 3.5 ± 0.05
XMIT PI	Paired	Between $0.7 \& 1.2$	2.5 ± 0.05 to 3.5 ± 0.05
XMIT FLI	Paired	Between $0.7 \& 1.2$	7.5 ± 0.05 to 8.5 ± 0.05
REPLY IFF	Single	0.09 ± 0.05 to 1.3 ± 0.05	
REPLY SLO	Single	2.25 ± 0.25 to 2.75 ± 0.05	
REPLY PI	Paired	Between 0.09 and 1.3	$7+0.10-0.05$ to $9+0.05--0.10$
REPLY EMER	Quadruple	Between 0.09 and 1.3	$7+0.10-0.05$ to $9+0.05-0.10$

The r-f signal generator employs a capacity-tuned half-wave-line oscillator having an electrostatic piston-type attenuator. A calibrated r-f output from 15 to 115 db below one volt rms is supplied at the S-G OUT jack on the front panel of the unit. The output level may be read direct from the attenuation dial, with the output held constant over the entire frequency range by virtue of an automatic-level control system. The signal generator is modulated by pulses from the coder so that the pulsed r-f output has the same spacing characteristics as the coder. The duration of the pulsed r-f output is within郎 . 2 microseconds of the duration of the coder pulses. The type of modulation desired is selected by the MODE SELECTOR on the front panel. For setting or reading requency, a calibration chart is furnished which may be fore signal generator, it is necessary to che wavener which an beterodyned with the use the waveme
The demodulator consists of an attenuating network
$\underset{~+}{\rightleftarrows} \quad$ Th wose r-f output is applied to a lighthouse type of diode The video output of the diode is applied to the vertical input of the cathode ray tube in the Oscilloscope Unit permitting the monitoring of r-f envelopes and the measurement of r-f power applied at the demodulator terminals. This circuit also permits duplexing the output of the r-f signal generator and the r-f output from the equipment being tested. Two input jacks are provided \pm for introduction of r-f energy from equipment under
est. The R-F IN jack is employed where r-f power in the order of 35 watts (pulse) or less may be expected, while the H-P IN jack is employed where r-f power up to 3500 watts (pulse) may be expected. The pulse power introduced into the test unit, after being demodulated, may be viewed on the oscilloscope and measured in terms may be wewed one measured in terms. of db above one watt by means of special calibration curves furnished with the equipment.
The wavemeter is a quarter-wave resonant cavity with a screw-driven tuning plunger operated by a front panel which is also used in the pulse counter and video calibra tor circuits which will be discussed presently. An af por circuits which will be discassed presh. An r-f in put switch permits selection of externally o meter for Pulse Duration
microsceconds)

Pulse Spacing,
microseconds)
wavemeter are accurate to within plus or minus 0.7 Mc . Calibration charts are furnished which can be read to within 0.1 Mc . The sensitivity of the wavemeter is such that at least a 25% deflection is given on the indicatin meter when r-f pulse power of 0.5 watt is applied. A sensitivity control, designated WAVEMETER SENSI TIVITY, provides for decreasing the sensitivity so that not more than 90% deflection is indicated when 35 watts of r-f pulse power is applied at the R-F IN jack or 3500 watts pulse power is applied at the H-P IN jack A pulse counter circuit is incorporated in the R-F Test Unit in the form of a direct reading meter with two scales provided 0 to 500 and 0 to 5000, there wh panel control. This pulse counter is trigered by pres generated in the coder unit. The counter inered by pulses currence frequency of either externally or internily generated synchronization pulses, with ar internall gener or minus 10% plus or minus 10\%
A video calibrator circuit, which is triggered from the pulse counter circuit, produces an output pulse of rec tangular form, positive in polarity and known peak am plitude. The duration of the pusle is 2.5 microseconds By means of a front panel control, VIDEO SELECTOR, the output of the calibrator may be set at one, two, five or ten volts peak. These amplitudes are accurate to plus or minus three percent. The output level may be set from the front panel using the same indicating meter that serves as the pulse counter and as the resonance indicator of the wavemeter.

Rectifier Power Unit PP-206 General

The Rectifier Power Unit supplies the following volt ages for use throughout the entire AN/UPM-4 Test Set:
(1) 425 -volt unregulated " B " supply.
(2) Regulated 300 -volt " B " supply
(3) Heater voltages.
(4) 24 -volt d-c supply for operation of the air-circulating blowers.
(5) Minus 27 -volt bias supply

The Rectifier Power Unit operates from a single-phase, a-c 47 to 2400 cps source with power consumption ap proximately 365 watts at $47-\mathrm{cps}$ and 330 watts at 2400 cps. Facilities are provided through a front panel switch to permit adjustment of the tapped primary of the power transformer for 10% above or below the normal 115 . volts input.
An overall functional block diagram of the AN/ UPM-4 (Figure 18) will assist the reader in following

FIGURE 18. Functional block diagram of the trans portable test equipment AN/UPM-4(XN-21).
the sequence of events throughout the discussion which follows. However, this block diagram is included only to illustrate the tie-up between the Oscilloscope Unit and the R-F Test Unit while individual block diagrams of ach of those units will be used as basic references

Oscilloscope Unit TS-491—Detailed

From Figure 19 it can be seen that the incoming trig.

FIGUR) 19. Detailed functional block diagram of the Oscilloscope Unit TS-491(XN-21)/UPM-4 of the AN/UPM-4 test equipment.
gers from the equipment under test are introduced into the AN/UPM-4 at J-101 (TRIGGER IN) and applied to a trigger amplifier V-101 through a two-position switch which permits using either positive or negative trigger input. V-101 is biased so that either a positive or negative pulse applied to the grid will cause a current increase or decrease respectively in the plate circuit. The plate circuit contains the primary of a transformer in series with the plate load, whose secondary is center tapped, as shown in Figure 20. Thus regardless of the polarity of input trigger, a positive pulse will always appear at the grid of V-102 another trigger amplifier. Since the plates of $\mathrm{V}-102$ and $\mathrm{V}-103$ (blocking oscillator) are connected together, when $\mathrm{V}-102$ conducts a pulse will be generated in the blocking oscillator and applied to a buffer ($\mathrm{V}-105$) across a diode $\mathrm{V}-116 \mathrm{~A}$. This diode generates a positive pulse in the cathode circuit which may be used as a suppressor pulse or as a trigger, as desired. Note that when the equipment is switched to INT SYNC the grid circuit of $\mathrm{V}-102$ is grounded and the V 103 is ias on V-103 is removed, effectively changing the blocking oscillator from a single swing to a free running oscillator, whose repetition rate is determined by the dual otentiometer R-113.
V-105 is a thyratron and is used to provide isolation between the blocking oscillator and the following circuits. This stage is normally non-conducting, being fired

FIGURE 20. Schematic diagram of the Oscilloscope Unit TS-491
by the positive pulse applied to its grid. Upon firing, a harp positive pulse is generated in the cathode circuit and a sharp negative pulse in the plate circuit. The pulse from the cathode circuit is used to trigger the weep gate multivibrator V-109/V-110 when S-102 is in the OUT or STROBE position. When markers switch -104 is in the ON position, the pulse from V-10s athode triggers the quick starter V-127. The negative pulse from the plate of $\mathrm{V}-105$ triggers the delayed trig. ger multivibrator $\mathrm{V}-118 / \mathrm{V}-119$, when the trigger delay witch is at either the 175 or 500 microseconds delay position. When this switch is OUT the negative pulse operates the trigger amplifier V-120
The delayed trigger generator produces a trigger pulse of positive polarity which may be delayed from 3 to 500 microseconds, dependent on the setting of the delay switch and the amount of delay introduced by the coarse and fine controls provided. Trigger amplifier V-120, derated by either a delayed or undelayed trigger, furishes pulse to the bosking oscillator, V-121. Pulses ishes a pulse to the blocking oscilior, -121 . Pulse enerain V (he use externally
The sweep delay multivibrator V-106/V-107 is inluded in . ally off while V-107 is conductiog The multivibrator liged by T 102) coupled across dinde V 104 B so that only the , mill V 104 B , This will apply a negative bias on V-107 cutting it off and allow ing V-106 to come into conduction. This condition wil exist until the negative pulse on the grid of $\mathrm{V}-107$ leaks off and the multivibrator returns to its normal con dition. The length of time is, of course, dependent on the adjustment of the delay controls on the front panel of the unit. The negative gate developed at the cathode \cdots of V-107 is used to trigger the sweep gate multivibrator

V-109/V-110 when S-102 is in the IN position. The positive gate developed in V-107 plate circuit is applied to the grid of $\mathrm{V}-124$ which acts as a mixer, producing a mixer gate for the timing oscillator clamp tubes, V-123 $\mathrm{A} \& \mathrm{~B}$. When the sweep delay selector $\mathrm{S}-102$ is in the STROBE position, a portion of the positive gate from $\mathrm{V}-107$ plate is also applied to a phase splitter $V-13$ in the video amplifier. This positive gate is differentiated with the result that a positive pip will serve no useful purpose but may be observed on the scope at the start of the sweep. The negative pip may be made to slide back and forth on the sweep from 3 to 500 microseconds. This is useful in that if the operator wishes to blow up a certain waveform appearing on a long sweep, while operating with SWEEP DELAY OUT he can move the strobe to the immediate left of the waveform, switch to SWEEP DELAY IN, then choose a shorter sweep fo ballooning of the waveform. As can be seen from Figure 20 the sweep gate multivibrator is triggered by V-108 which in turn can be triggered by the positive pulse from the cathode of V-105 during SWEEP DELAY OUT ditions, or from the trailing edge of the developed at the cathode of the sweep delay negative gat during SWEEP DELAY IN conditions. The multivibrator will remain in a triggered condition V gate conducting and V-110 cut off, until a shat off igat conducting in 115 and coupled ber generated
The positive pulse from the plate of the gate multivibrator is coupled to the grid of $\mathrm{V}-111$, whose output serves two purposes; 1) Intensifier gate for the cathode ray tube. 2) Mixer gate for timing oscillator clamp tubes The negative gate produced at the plate of V-109 is ap plied to the grids of $\mathrm{V}-112$ and $\mathrm{V}-113$. The voltag at the plate of $\mathrm{V}-112$ will start to rise and would con tinue in an exponential mannner except for the unusual circuitry which makes the voltage rise extremely linear. When the sweep voltage has risen to a predetermine level, as adjusted by the sweep amplitude controls,

V-115 will conduct and generate a negative pulse in its plate circuit. This negative pulse is coupled back to the grid of V-109 ($1 / 2$ of the sweep gate multivibrator) cutting it off and restoring the circuits to their original condition. The positive sweep from the cathode of V-114 is applied directly to one plate of the cathode ray tube and to the other plate through a sweep inverter, V-117, thereby affording push-pull sweep deflection. As mentioned previously, marker pips are provided for use on the various sweeps available in the AN/UPM-4. The 0.1 microsecond pips are generated in a $10-\mathrm{Mc}$ oscillator (V-128) and applied as a sine wave to the cathode of the scope tube. Therefore on the negative swings there will be a brightening on the scope, and on the positive swings, the scope will be cut off. This results in the appearance of a series of dots on the scope separated by blanking. The 1,5 , and 50 microsecond markers are generated in a different oscillator ($\mathrm{V}-130$) by switching any one of three tuned circuits ($1-\mathrm{Mc}$, $200-\mathrm{kc}$, and $20-\mathrm{kc}$) between grid and ground of the oscillator. When the markers switch is turned to the ON position, regardless of the sweep in use, a series of timing pips (either 1,5 , or 50 microsecond) will be applied to the grid as positive pulses. If the 3.5 microsecond sweep is in use, and the markers switch is turned ON , every tenth 0.1 -microsecond pip will be brighter than the others due to the coincidence between that tenth pulse from the $10-\mathrm{Mc}$ oscillator and the 1 microsecond markers being applied to the grid of the scope tube. When the sweep selector is in any other position than 3.5 the $10-\mathrm{Mc}$ oscillator is not triggered and no 0.1 microsecond pips will be generated. When markers are
being applied, a timing marker gate is generated by com bining pulses in $\mathrm{V}-124, \mathrm{~V}-125$, and $\mathrm{V}-116 \mathrm{~B}$, whose plates are connected together. The action in these tubes is as follows: A negative pulse from blocking oscillator V-103 is applied to the cathode of V-116B. When the sweep delay switch is in the IN position, a portion of the positive gate produced at the plate of $\mathrm{V}-107$ is applied to the grid of $\mathrm{V}-124$. A portion of the positive block-on gate developed at the cathode of V-111 is ap plied to the grid of $\mathrm{V}-125$. As a result of the applica tion of these three pulses there is developed at the com bined plates of V-124, V-125, and V-116B a negative gate having a duration sufficient to unclamp the timing oscillators for the required time. When no markers are desired, OUT o the OUT position. This removes the plate voltage from the timing marker gate (V-124, V-125, and V-116B) and disconnects the grid of the quick starter (V-127) from the Sweep Duration Selector.
An input attenuator, in the form of four ladder net works, is interposed between the VIDEO IN jack and the first video amplifier. This attenuator provides various degrees of vertical deffection sensitivity on the cathode ray scope. When the video sensitivity control is in the 20 (20 -volts per inch) position all four networks are connected, in the 10 position-three networks are con hected in the 5 position-two networks are connected, and in the 2 position-one network is connected. When the video sensitivity control is placed in the 1 position, the video is connected through $\mathrm{R}-244$ to the grid of $\mathrm{V}-124$. When the control is placed in the 0.2 position (0.2 volts per inch), the resistance of the plate load is

FIGURE 21. Schematic diagram of the Coder Unit of the R-F Test Unit TS-492(XN-2I) of the AN/UPM-4 test equipment.

FIGURE 22. Block diagram showing arrangement of circuits and signal paths in the Coder Section of the R-F Test Unit TS-492 for generating paired pulses.
effectively increased with the result that the amplification s increased approximately five times. To obtain uniform vertical deflection, a phase splitter ($V-135$) is utilized o provide two outputs, one from cathode, the other from plate to separate video amplifiers. The outputs from the fideo amplifiers (V-136 and $\mathrm{V}-137$) are applied to the apper and lower vertical deflection plates respectively

> R-F Test Unit TS-492-Detailed

The trigger pulses from the delayed trigger generator, -121, in the Oscilloscope Unit are applied to the Coder Unit in the R-F Test Unit. The unit is so connected that either positive or negative polarity output pulses are supplied at a front panel jack (CODER OUT) for ex ternal use. In addition to this external trigger source, the coder also provides negative pulses for modulating the R-F Signal Generator. Figure 21 is a schematic diagram of the Coder Unit and can be used to follow the se quence of events upon receipt of a trigger from the delayed trigger generator. Seven types of coder output pulses shown in the Table on Page 24 are produced by one of the three modes of coder operation as fol-

FIGURE 23. Block diagram showing arrangement of circuits and signal paths in the Coder Section of the R-F Test Unit TS-492 for generating single pulses.
lows. The first mode is the generation of 0.7 to 1.2 microsecond paired pulses (XMIT PI, and XMIT FLI) Second mode of operation is the generation of 0.9 to 1.3 microsecond pulses and 2.25 to 2.75 microsecond pulse (REPLY IFF and REPLY SLO). The third mode is the generation of paired and quadruple 0.9 to 1.3 micro second pulses (REPLY PI and REPLY EMER.) Thes three modes of operation are illustrated in Figures 22 23 , and 24 respectively. In Figure 22 the blocking oscil lator tube output is divided, with one chain being undelayed and the other delayed through V-303, V-304, V305, $V-306$, and $V-307$. The amount of delay can be either three, five, or eight microseconds depending on the type of output desired, IFF, P1, or FLI. In Figure 23 the action is similar except that the timer and associated circuits are used to determine the duration of a single pulse output, either 1 or 2.5 microseconds, depending upon whether the switch is placed in the REPLY IFF or REPLY SLO position respectively. The positive output from V-308 is obtained by transformer coupling in the plate circuit. Figure 24 shows the third mode of operation used to generate REPLY PI or REPLY EMER pulses.

FIGURE 24. Blit diagram showing arrangement of ci cuits and siock diagram showion Soder Section the R-F Test Unit TS-492 for generating EMER (four) pulses.

The trigger applied to $V-302$ causes that blocking oscillator to ring for a period of time between 0.9 and 1.3 microseconds. V-309 and V-310 constitute a timing multivibrator with a ringing circuit included in the plate immediately upon triggering of the multivibrator and will continue to ring for a period equal to the length the gate developed by the multivibrator For REPLY PI the gate is of sufficient length to arlow two oscilla tions to be superimposed and for REPLY FMER is long enough to allow four oscillations to be super imposed. The period of oscillations may be varied from 7 to 9 microseconds by a control provided to adjust mode the waveform generated in the timing multi vibrator is applied to a trigger amplifies so biased that oly te par the only V , 11 generates two or four squed puction Thus -311 generates two or four squared pulses de pending upon the mode of operation (PI or EMER) and these are applied to a second blocking oscillator -306. The 0.9 to 1.3 eres par or ruple 8 microseconds, which are aplied to the nd sped 8 V 307. The output amplifie, $\sqrt{207}$. The oup of former coupled to produce positive or negative pulses for application to the CODER OUT jack on the fron panel.
The negative pulses from the coder unit are applied to the cathode of the R-F Signal Generator as shown in Figure 25. The signal generator is a type 6L4 acorn triode operating with its grid grounded. The resonant cir cuit is an open half-wave line tuned at the end by a

FIGURE 25. Functional block diagram of the R-F Test Unit TS-492 (less the Coder Section) showing basic signal paths and circuits.
variable capacitor. The plate of the oscillator is con
nected to a metal strip which is the center conductor of the tuned transmission line. The r-f pick-up for the wavemeter projects into the transmission line box and consists of a 47 -ohm resistor, one end of which is connected to the center conductor of the coaxial cable leading to the WM INPUT selector, the other end bent into a pick-up loop. The r-f pick-up for the ALC (autointo a pick-up loop. circuit and for the electrostatic coupling to the piston-type attenuator consists of a 56 -ohm pesistor and its leads. One end of the resistor is connected to the plate of the ALC rectifier (see Figure26) and the other end is by-passed to ground for r-f and connected through a coupling capacitor to the ALC input integrator. The output of the oscillator is picked up electrostatically by the attenuator and delivered to the SG OUT jack on the front panel. The attenuator the SG OUT jack on the front panel. The attenuator ATTENUATION dial on the front panel. The dial is carefully calibrated to read directly in decibels below a carefully calibrated to read directly in decibels below a one-volt rms open-circuit reference level with a range
from 15 to 115 db . The ALC circuit, composed of from 16 V-317 V-318, V-319, V-320, V-328, and $\mathrm{V}-329$, is included to maintain the output of the r-f $V-322$, is incluced to maintain the output of the r -f signal generator at substantially constant level with any given setting of the ATTENUATION DIAL over the entire frequency range. The action of the ALC system is such that an increase in r-f oscillator output causes a lowering of the oscillator plate voltage and similarly, a
drop in the output of the r-f oscillator causes an increase drop in the output of the r-f oscillator causes an increase in the oscillator plate voltage,
tively constant output level which is desired.
tively constant output level which is desired.
The wavemeter consists of a tunable cavity into which
he r-f energy is coupled by an induction loop terminated in a $51-\mathrm{ohm}$ resistor. Tuning is accomplished by means of a screw-driven plunger which is connected to the wavemeter tuning knob and a counter-type dial. When the cavity is tuned to one-quarter wavelength r-f energy is transferred to an output pick-up loop. This output is rectified by a crystal and applied through a filter to the output jack. The rectified output of the wavemeter is a negative waveform which approximates the envelope of the input signal. The rectified output is passed through two video amplifier stages, a cathode follower, an integrator circuit and applied to the front panel indicating meter through an output amplifier. Resonance in the wavemeter is indicated when the meter on the front panel reads minimum. A control is provided to vary the amount of signal applied to the integrator so that the operator may keep the meter needle operating at some level less than maximum but more than minimum scale reading, thus affording greater accuracy.
The demodulator consists of a lighthouse type diode detector, with associated attenuating and matching networks, operating over the frequency range employed by the Mark V IFF/UNB System to produce an output without appreciable distortion for waveshape measurements and of peak voltage for power measurements. A relatively small percent of the power applied to the demodulator from an external equipment is applied to the input of the wavemeter so that frequency measurements can be made.
The pulse counter is employed to count trigger pulses produced by the blocking oscillator (V-302) of the coder unit. This counter reads the pulse recurrence frequency at which the AN/UPM-4 is operating whether
it is externally triggered or self-triggered. The indica tion is given on a front panel meter which has two scales provided - 0 to 500 and 0 to 5000. This circuit employs a gas triode and associated components so that when a pulse is applied to the triode a current is passed through the pulse counter circuit and through the front panel meter. The average current through the meter is propor tional to the pulse recurrence frequency with the meter being calibrated to read the exact repetition rate being applied.

Portable Test Equipment AN/UPM-6

The portable test equipment AN/UPM-6, which is primarily designed for "GO"- "NO GO" tests on units of the Mark V IFF/UNB, is similar in operation to the transportable test equipment AN/UPM-4 except for the following
(1) No oscilloscope presentations are available on the AN/UPM-6.
(2) No time base measurements can be performed with the AN/UPM-6.
However, there are several circuits which are common in their purpose, although perhaps slightly different in circuitry, such as the Coder-Decoder, R-F Signal Generator, Demodulator, Wavemeter, and front panel voltmeter. In the AN/UPM-4 slow code could be checked by the use

FIGURE 27. Functional bock diagram of the portable test equipment AN/UPM-6(XN-21).
of the oscilloscope provided with the equipment, whereas in the AN/UPM- 6 this operation is performed by neon indicating lamp. The AN/UPM-6 is a self-con tained instrument except for accessories case. The equip ment will operate from an a-c supply of 115 -volts, 47 to 2400 cycles, or from a d c source of 20 to 30 volts. When perating from the de source, however, verter, Type PU-120/U is necessary and is provided with the equipment
This equipment is primarily designed for use in aircraft squadrons where a portable gear for checking airborne transpondors and interrogator-responsors, without removal from the plane, is highly desirable. In this connection the AN/UPM-6 is made up as a single unit with a carrying strap, the weight being kept to a minimum. It has been used extensively throughout the period of the evaluation of the Mark V IFF/UNB System, both at aircraft shore bases and on board a light aircraft carrier which carried planes equipped with Mark V IFF UNB components. The AN/UPM-6 can be employed to make transmitter and receiver frequency measurements measure power output, check slow coding, check modes of operation, measure the firing rate of transpondors, etc. Figure 27 is a functional block diagram of the AN/ UPM-6 showing the various circuits, connections, in puts and outputs provided to accomplish the functions for which the equipment was designed. Note that Switch S-101 is a 6-position switch. This is the TEST SELECTOR switch and provides the necessary circuit changes to conduct each type of test available on the switch. The functions of each position of the TEST SELECTOR switch are described briefly as follows:
Position 1-The coder-modulated output of the r-f signal generator is supplied to external equipment connected at the RF IN or HP IN jacks on the demodulator. The type of r-f pulse depends on the position of the MODE selector.
The reply signal of the transpondor under test is received at the RF IN or HP IN jack on the demodulator, providing a check of its recurrence frequency. (See Figure 28.)
Position 2-The coder-modulated output of the r-f signal generator is supplied to external equipments in the same manner as in Position 1.
The reply signal of the transpondor is received at the RF IN or HP IN jack on the demodulator, providing a check of the peak amplitude of the r-f output of ereply signal. Slow code may be read in this position also. (See Figure 29.)

Position 3-The video signal under test is applied via VIDEO IN jack and video step atenuator to the peak voltmeter chain, providing a measurement of the amplitude of the positive polarity pulses. (See Figure 30.)

Position 4-Paired pulses from the equipment under test are applied to the demodulator at the RF IN or HP IN jacks. The rectified envelope of the signal is applied to the decoder aircuit sor Tied to the peak voltmeter chain and the plied to the peak voltmer used in conpeak voltmeter reading is used to conunction with callration (anes to determine r-f power output. (See Figure 31.)
Position 5-The coder-modulated output of the r-f signal generator is supplied to an inter-rogator-responsor connected at the RF IN or HP IN jacks on the demodulator. The type of r-f pulse depends on the position of the MODE selector. The level of the r-f pulses delivered at the jacks is known from ATTENUATION DIAL readings.
The video chain of the responsor is connected at VIDEO IN and applied to the peak reading voltmeter to check peak amplitude. (See Figure 32.)
Position 6-R-f output from external equipment under test is applied at the RF IN or HP IN est meter via the WAVEMETER INPUT elector and the output of the wavemeter scoplied to the peak voltmeter chain When When equipment voltuer, freq is (See Figure 33.)

Thus we have a portable equipment, which for all prac ical purposes can be utilized for field service work with out the attendant extra weight of the AN/UPM-4 and with only the loss of two functions as mentioned pre iously.
This concludes the series on the Mark V IFF/UNB System and it is hoped that electronics personnel of the Naval service who have read this, will have gained a better insight of the overall IFF program and be on familiar ground should they be assigned to maintenance of any of the units described in this series.

FIGURE 28. Block diagram of the AN/UPM-6 show ing arrangement of circuits when checking pulse repeti-

FIGURE 29. Block diagram of the AN/UPM-6 showor peak power of equipment under test.

FIGURE 30. Block diagram of the AN/UPM-6 showing arrangement of circuits when checking peak amplitude of video signal from equipment under test.

FIGURE 3I. Block diagram of the AN/UPM-6 showing arrangement of circuits when checking r-f power output from equipment under test

FIGURE 32. Block diagram of the AN/UPM-6 showing arrangement of circuits for checking peak amplitude o video signal from interrogator-responsor under test.

FIGURE 33. Block diagram of the AN/UPM-6 showing rrangement of circuits for checking frequency of equipment under test.

EQUIVALENTS AND SUBSTITUTES

In fulfilling its mission of providing electronic maintenance repair parts for the Navy, the Electronic Supply Office does not always provide the exact item requested on requisitions or as described on Stock Numbered Description Cards. When items are provided which are not identical to those requested on requisitions or as described on description cards, they are termed equivalent or substitute items.
An_{n} item provided as an equivalent can be issued and installed in all Navy equipment in lieu of the item it has superseded, but, when a substitute is provided, it can be installed only in the set or equipment in which the superseded item was used.
This office may provide equivalent and substitute items out of necessity or through planned programs to support Naval electronic equipment at a minimum cost. Many times the item described on a Stock Numbered Description Card or requested on a requisition is no onger available from suppliers; hence, this activity must accept slightly different items to maintain support of equipment. Also, equivalent items may be accepted to allow wider competition when purchasing the item, with resultant lower cost.
In other cases, ESO provides a better or "preferred" item that has not yet appeared on a preferred item list. The benefits of such an action are obvious, since a preferred item generally replaces two or more previously tocked items.
Before an equivalent or substitute item is provided replenish stock or satisfy a particular requisition, a horough technical review is made to determine whether the equivalent item can be issued and installed throughut the Navy or that the substitute item will satisfy a particular equipment application.
particular equipment application
Activities receiving material procured as a substitute or an equivalent are so notified by annotations on the purchase documents. Two examples illustrating the manner in which these annotations are made follow: -To satisfy a recent requisition for a Connector, N17-C-70361-4343, ESO bought N17-C-70361-
4337. The two connectors were essentially the same except for the insert material. In the first this was Bakelite; in the second phenolic. The following statement was inscribed upon the purchase document "The material described in item 1 is technically equivalent and is to be accepted as a replacement for stock number N17-C-70361-4343. This material should be carried under stock number N17-C-70361-4337.
2-If, on the other hand, the item bought by ESO is so similar to the requisitioned item that the two can be stocked together, the purchase document will bear a notation such as:
"The description of item 4 is the description of the material being purchased. It is equivalent to the basic description of the stock number of item 4 and will be carried under this stock number." This method of annotating purchase documents elimi nates difficulties which might otherwise arise at activities receiving substitute material.

SERAD PROGRAM

The BuShips Special Electronics Restoration and Distribution Program is bringing into the Electronic Supply System, at a relatively low cost, many parts-peculiar, high cost items and items in short supply.
To ascertain which items generated from the SERAD Program should be made available for stocking in the Electronic Supply System, a technical review is made of all Class III Material, that is, certain specified components and parts for those electronic equipments which as a unit, are considered beyond equir Sparts Breakdown Lists for such equipments are pare Part ESO technicians, and annotations ments are screened by ESO teconsidered necessary to the made parts considered necessary to the system.
Whenever it is determined that there is less than two years' supply of these parts now in stock, ESO prepare a list of the desired items for each equipment, by stock number and circuit symbol number. This list is forwarded to the cognizant shipyards with the request that all quantities of such items generated from the SERAD Program at each activity be turned into the supply departments for stocking

A major problem in maintaining the Electronic Supply System is that of procurement. ESO must meet requiredoing so. Because of the complexity of electronic material, many difficulties are encountered in accomplishing this task. The time required to obtain delivery varie greatly due to problems arising within ESO and without In considering first those problems that cause delay within ESO, it must be borne in mind that the nature of the material itself is a very important factor. A large percentage of the Navy electronic maintenance repair parts do not have a commercial counterpart, having been manufactured especially for a certain Navy type equipment. As a result, if the original manufacturer does not have stock on hand, a special manufacturing run must be made which generally results in a unit price far above the estimated or war time price. This delays the award to the manfere as a revaluation is made to determine if the need for the material warrants the expendiGure of the funds. If on the other hand, the manufacturer has the material in stock at a reasonable price, an ward is made immediately, and delivery takes only a reluctance of more. Aid on small quantities. Since the bulk of the purchase requests are for small quantities, this of the purchase requests
presents a definite problem.
In many instances, firms which manufactured material for the Navy during the past war are no longer in a posifo bid on the item, his wessitates obtainfacture of peacetime producs drawings and cle fabricted elsewhere. In other order to have the material fricully expected time must words, at least double the of experiptions be taken to obtain bids. Lack of adequate descriptions has also caused considerable delay in obtaining material. This is being overcome, however, by the development of descriptions that will enable the reall to be readily identified by the commercial field and will result in much shorter delivery time.
Awards must be made, in many instances, where the delivery cannot be effected until as far as six to twelve months from the date the manufacturer receives the order. This, as a rule, is the case where only one known source of supply for the item exists and the long delivery time must be accepted. The small percentage of government business today as compared to commerin business gives the Navy small preference for their requirements. The manufacturer is incrested in large orders for production runs and the small orders must wait until later. Additional sources of supply and adequate procurement history are being developed by activity as rapidly as possible. Once this information is completed and maintained on a current basis, more intelligent buy-
ing can be accomplished, with a resultant shortening of procurement lead time. Until this goal is reached, however, delays in the receipt of purchased materials can be expected at a gradually diminishing rate.

INTER-DEPARTMENTAL PROCUREMENT

Increasing demand is being made upon electronic supply points for the logistic support of Army-type equipments used by the Marine Corps, U S Naval Air Missile Test Center Point Mugu, California, and other Naval activities. ESO is responsible for complet supply support of the Marine Corps equipments and is supplysing close liaison with the Army Signal Corps mainnailitg cose laison oo facilitate procurement parts.
The Army will act as a purchase agency for the Navy for materials not available within the Signal Corps stocks. It is expected that this interservice agreement will result in accelerated supply of requirements.

PREFERRED TYPES OF FIXED COMPOSITION RESISTORS

During a recent conference between representatives of the Bureau of Ships and the Electronic Supply Office it was agreed that the 10 per cent tolerance Fixed Composition Resistors would be used as the preferred types. Resistors were one of the most critical items of manufacture and supply during World War II; therefore various studies have been undertaken to prevent a reoccurrence in the event of an emergency. The lower the tolerance rating the more critical the item becomes. The Armed Services Electro-Standards Agency (ASESA) recommends the use of the 10 per cent resistors in the design and maintenance of new equipments. When these recommendations and other standardization practices are incorporated in the production of new equipments, mainenance and supply problems will be materially reduced. The 5 per cent tolerance resistors will be listed in the parts list and allowances to support the circuit applications requiring the use of this value. The 10 per cent torance resistors will meet all the requiremen for Fixed Composition Resistors of 10 per 1 ratings and will appear as the preferred type in future parts lists and allowances.

FOR

ELECTRON

MAGAZINES

At last your copies of Electron Magazine, NavShips 00,100 no longer need lie around loose, without pro ection. The magazine can now be kept in neat strong inders, indexed, and grouped by volumes. Initial dis tribution of binders for the first four volumes is being made to all vessels of the active fleet and to all fleet commands. The binders for the fifth volume are under procurement and will be distributed shortly. A sufficient quantity of indices will be provided at the same time. Electron magazine was first published in July 1945 and Volume 1 includes the issues from that date through June 1946. The magazine is published on a fiscal-year basis rather than a calendar-year basis. This fact must be borne in mind when referring to a particular issue.

FIGURE 1. Set of binders for BuShips Electron Binder for Volume V will be available shortly

FIGURE 2. Magazines being inserted into binder

The new binders are appropriately marked indicating volume number and year. Each binder will hold 12 monthly issues plus an index
A set of five binders for the first five volumes is shown in Figure 1. These binders permit safe and convenient storage. An outstanding feature is the retention of all the copies of Electron in one place. This is very important when reference must be made to articles published in the past. Examples of this are the frequen references an officer or technician may make to the article "Interchangeability of Synchros," February 1946 (Volume 1, Issue 8) or to the story "Electronic Equip ment Records," February 1948 (Volume 3, Issue 8).
Insertion of individual copies is simple. First, the bin der is placed on a desk or table with the front cover in almost a verticle position. The retaining wires should be loosened one at a time, facilitating the work. Next, the magazine should be opened to the center page and inserted carefully, so that it does not engage or tangle with the loops of the adjacent wires at the top of the binder With the left hand guiding the magazine into position, the retaining wire should then be bowed slightly and brought down and re-inserted into the hole at the bottom of the binder as shown in Figure 2
When assembled in this manner, the wires hold the magazines firmly, and the full contents of all pages is visible. With this type binder, the pages are not hidden by foldover or marred by holes as would be the case if ring binders or loose-leaf notebooks were used
Additional copies of the magazine BuShips Elec TRON may be ordered on Publication Requisition Nav exos-158 from the nearest District Publications and Printing Office. The requisition should list NavShips 900,100 as the short title of the publication and should include the volumes and issue numbers' desired.

Sirs:
It has been the experience of maintenance personnel at NSS that the average service life of the tuning inductors used in amplifier five of the Model TEF 2-kw SingleSideband Transmitter (Western Electric Co. D156000) is excessively short. Failures in these tuning coils (Western Electric Co. Drawings ES-550309 and BR-463464) have been due in the main to arcing and burning between the coil conductors and the rolling contacts used to short turns in tuning Investigation showed that when the coils are rotated to the ends of their range, the rolling contact strikes the silver-soldered end connection, burring the rolling contact. Then as the amplifier is tuned, the burred roller roughens the surface of the coil wire causing por r - contact with subsequent overheating and arcing between the roller and coil. Once overheating and arcing begin, the coil and contact surfaces progressively deterionte resulting in complete failure with attendant circuit outage.
thas suggested by M. L. Baughn, RMC, USN, that a " $s \mathrm{ft}$ " ductors, the rolling contact would not be damaged by peration into such a stop and the life of these expensive tuning This corl assember celiability as well s in cond result in thise ransmitter.
Accordingly a pair of Amp 5 coils were modified by building up soft-solder stops at each end of the coils. These stops were made the width of the coil esperi-作 67 which is used in Washington-Honolulu Single Si which is
These Loop. heir installation five monthe and there has been no oticeble roughening or discolotion of ore the have been ing contacts or coidenty turning the rolling contact off cas of a failue which sometimes requires he end of the con, a assemblies for correction removal of the tuning assen
U.S. Navy Communication Station,

Annapolis, Maryland.

STRANGE RBB ACTION

In reference to E. M. Gilbert's letter which appeared in the December Electron, I wish to describe another occurrence of the type reported.
We have quite a few Model RBB receivers which can be heard without earphones, due to the output transformers reproducing the signal. In checking the transformers, I have found that the resistance of the primary windings are lower than normal, while the secondary windings are normal.
I believe that one of two things could be causing the reproduction in the output transformer. Number one, the primary may be shorted and the signal comes from the arcing at the short. Number two, the windings may be loose and therefore free to vibrate, reproducing the signal.
It is my opinion that this is a common occurrence as I have also encountered it in the Fleet with different model receivers. I'm sure there are many other ET's who have also noticed it.
Walter V. Beall, ET1
Box 107, 5th Div
Electronics Material School,
Treasure Island, Cal.

STRANGE RCH ACTION

Sirs:
Concerning the December 1949 Electron Orbit, The Strange Action of RCH Serial No. 205. If I understand the problem correctly the answer will be ound by a review of L-F oscillators, H-F oscillators F amplifiers, and heterodyne action. Put them all in a box like an RCH and most anything will come out.
There is no reason why an R-F oscillator coil can not
have an iron core. Think that is the "Q
D.R.E.W.P.O

Fourth Naval District,
Philadelphia, Pa

Again!
Navy Scores

The March 1950 BuShips Electron featured the U. S. Navy Electronics Exhibit at the I. R. E. Convention, and contained artist's conceptions of the various parts of the exhibit. On this page are a few photographs of actual scenes from the exhibit. 1) Balance-Strain Gauge submitted by N.O.L.; 2) View of center of exhibit; 3) Right-hand section of exhibit; 4) Throng viewing lefthand section of exhibit; 5) V-H-F Communication Equipment; 6) Sonar Trainer; and 7) Calibration Standard and modern test equipment.

As this issue of BuShips Electron goes to press, the 1950 Electronics Conference is about to start at the Bureau of Ships. The conference will run from May 1st o May 5th, inclusive.
Representatives of the fleet, field activities, and the Bureau of Ships will meet to discuss common problems, such as new technical advances in the electronics art, improved service to the fleet and shore establishments, maintenance and installation problems under stress of strict economy and conservation of critical materials, and the most effective methods by which electronics may better contribute to national defense.
This conference, held annually, affords an opportunity for the Bureau to obtain the individual and collective opinions of field representatives concerning the many problems which arise in the field of Naval electronics. In addition it provides a close contact between field and
Bureau personnel, facilitating the optimum utilization of electronics material and manpower. From this conference, there will emerge, as in years past, plans for progress in research and development, and advancements in Naval

ELECTRONICS CONFERENCE at Bureau of Ships
electronics that will further strengthen our national defense. The major problems to be considered at this year's conference are outlined below in the tentative agenda:

-Problems of General Interest.

2-Problems of Maintenance Yards
-Electronics Supply Problems
4-Fleet Installation and Maintenance Problems.
5-Shore Installation and Maintenance Problems.
Each of these general topics has been subdivided and each of these subdivisions has been assigned to one of the activities concerned, for preparation and presentation at the conference. The Bureau greatly appreciates the interest taken by the field in the submission of numerous excellent suggestions for the agenda and in the preparation of artes for he confernce. Obviously the five day period will be far too short to discuss all items of interest. Many will be covered during the conference discussions, and the Bureau hopes to provide supplementary inform or or pogang as many olle points as possible prior to the end of the conference

QHB SERIES TUNING

It has recently been brought to the attention of the Bureau of Ship OHB series equipment is being ships the the resonant of the rer instruction books.
The Bureau of Ships is extremely concerned regarding
these reports, because, if true, the operating efficiency of the equipment is seriously impaired
equipment is seriously imparucted as near to a given Sonar transducers are constructed as variables of mass frequency as possible, but due to the variach transducer of the physical elements in a transducer, cad mary from . 6.6 en or taking a beam pattern, each equipment must be tuned to the resonant frequency of the transducer installed. The resonant frequency is to be determined by using a Model OCP-1 Sonar Portable Testing Equipment, and the QHB equipment is to be operated at this frequency.

In order to supply the proper information to all shore activities and units of the Fleet, the Bureau has published complete information in the Electronics Installation Bulletin \#240 dated 17 November 1949; in the Sonar Bulletin (NavShips 900,025A) Supplement \#16, Page 12:2 dated 1 January 1949; and in the March 1949 BuShips Electron on Page 22.
All personnel, civilian, officers and enlisted men, who take beam patterns, tune, operate or otherwise have anything to do with frequency setting of the QHB series sonar equipment are instructed to read Paragraph eight of the article in either of the foregoing publications which contain special instructions concerning correct alignment and frequency setting
Attention is also invited to the fact that some installations have dome-mounted monitors that indicate maximum output in the water; where installed, these monitors should be used when tuning

DANGER!
 MODEL BC-610
 TRANSMITTING
 EQUIPMENT

No inside service work should be performed on the Model BC-610 Radio Transmitter with the filaments ighted.
LCdr. L. C. Harlow, Asst. E.O., Norfolk Naval Shipyard reports that a high-voltage hazard exists in this quipment when the filament circuit is energized. Al hough the interlocks may function correctly, the design of this transmitter is such that 400 volts appear on the grids of the 100 TH modulator tubes and the outside ans of filter capacitors C-20 and C-21 whenever the flament power swa turns on the modulator bias power supply. Personnel
 he tubes are lighted
Model BC-610
BC-610 transmitters are being installed at Naval Reserve Training Centers, Warfare Stations and Companies.

GCA SCORES AGAIN

An outstanding instance of the valuable and lifesaving ontribution of GCA to aviation was brought out in the March Operations Report of GCA Unit \#31 located at Naval Air Station, Willow Grove, Pennsylvania.
At about 1700 on 10 February 1950, this GCA Unit was alerted for possible assistance to a JRB, which was en route to Quantico, Virginia on an IFR flight plan from Glenview, Illinois. The pilot was unable to land at Quantico and could not get clearance for his alternate field, Patuxent River Naval Air Station, so he proceeded to Willow Grove reporting that he was low on fuel. The aircraft was reported over the Willow Grove Range Station at 5,000 feet at 1742. Communication was estabished immediately with the plane as it started to descend and at 1745 radar contact was made about nine miles
 approach at 1759 with the wind velocity $8-10$ knots from the northeast. The ceiling was 1,200 feet, overcast, with scattered clouds at 500 feet. Visibility was restricted to $1 / 2$ miles by light rain, fog and darkness. A check or the planes fuel immediately after landing revealed only four gallons of gasoline remained. The occupants the plane, two pilots and two passengers, were, of course, very much impressed by GCA.

MARK 25 MOD 2 AFC DIFFICULTIES

One of the most frequent causes of trouble in the Mark 25 Mod 2 equipment has been the failure of the automatic frequency control (AFC) to lock in while operating. This condition has been caused by maladjust ment of the repeller voltage on the local oscillator, non alignment of the magnetron tuning drive with th magnetron, or, in a few cases, by bad tubes in the AFC unit. The most serious cases have been caused by the 2 K 45 oscillator tube and the 2 J 51 magnetron
Failure of the 2 K 45 , in most cases, has been due to the breakage of the polystyrene insulation in the output coaxial transmission line of the tube at the point where the outer conductor is crimped to hold the insulation in place. When this dielectric in the output probe is broken, the r -f output from the tube arcs across the coaxial line On several installations replacement of the 2551 mag netron has corrected the failure of the AFC unit to lock in normally, In one case, eplacement of the 2J51 did not correct the trouble, but in af her 2J51 was installed and the trouble cleared up. The indication of trouble where trouble cleared up. The netron restored normal crually locked in, but its fip frequen was ap proximaly in, but hip-hop frequend which proximately only 2 to 3 cycles per second, which fippeared as was noted to wary with different fip-flop frequency was magnetron frequencies, and usually an r-f frequency any circumstances. All of these equipments appeared to work normally in mapere to magnetron.-W. E. Newsletter

\section*{$\cos _{-}^{\infty}$
 | Type of Approach | February | Date |
| :---: | :---: | :---: |
| Practice Landings | 10,586 | 323,07 |
| Landings Under Instrument Conditions | 659 | 13, |

MARK 39 MOD 3

U.S.S. Floyd Bay (AVP-40)

Field Engineer R. D. Schroe

 Naval Shipyard, reports:Preliminary voltage checks showed lack of a-c excitation to the main terminal panel of the Mark 39 Radar. The initial fuse at the Mark 3 fuse box was blown and the replacement blew immediately. An ohmmeter check of the line at the Mark 3 fuse box indicated a direct short. Further tracing revealed the trouble to be in the OfF-ON switch in the primary of the 3 -kva regulating transformer. As wired, a direct short was thrown across the line when the switch was in the on position. The trouble was cleared by rewiring the switch.
Both the main and precision sweeps had what appeared to be a 60 -cycle modulation. Although meter M-702 indicated that the output of the regulated rectifier in the power supply was set at 300 volts, a check with an external supply was actually 360 volts. When this level was lowered to 300 volts, as read on the external meter, the sweeps returned to normal. M-702 was corrected by resetting the zero point to its correct position.
A complete lack of grass and/or signals was observed on the indicator scope. Checking the external video cable showed it to be good and installed in the correct jacks. A check of the internal video cable indicated an open in the section connecting the radar indicator to the console (P and J 408 to P and J 408 A). Checking the remainder of the cables in the same "tree" revealed that the cable connecting to P and] 403 was also open. The entire group of cables in this "tree" was replaced from a spare Mark 39 Radar being rebuilt by the shipyard. After all cables had been replaced, video signals appeared on the indicator scope.

The operation of $\mathrm{V}-316$ (local oscillator) was very unstable while tuning. A spare local oscillator was intalled and tuning became stable and normal.
After the receiver was tuned, it was found that throwing the AFC switch to the on position detuned the receiver to the point where the echoes on the indicator were only about half the amplitude for peaked manual tuning. A check of the tuning control (manual) of the local oscillator indicated that it was operating in the proper mode. Further checks indicated that the secondary of L-314 was not properly balanced. This condition was overcome by readjusting $\mathrm{C}-341-\mathrm{B}$ and the circuit operated normally except for a chattering of the AEC relay (K-302) which was cleared by tightening the relay.
When the FTC relay ($\mathrm{K}-301$) was energized, the traces on the indicator became very unstable. This action indicated a faulty relay or dirty contacts. Removal of the relay and burnishing of the contacts corrected the trouble.
With the receiver gain in manual control, the sweeps and echoes on the indicator inverted when the gain control was placed in its upper limit. A check of the voltages and resistances in the gain control circuits revealed all to be within tolerances. An improperly operating i-f stage was then suspected as the cause. Tube-by-tube substitution check of the receiver i-f strip disclosed Tube $V-304$ to be defective. Replacement of this tube cleared he trouble.
The aided tracking motor of the radar range unit would not drive the range counter without hanging at approximately every 2000 yards. A complete clearing of all the gearing in the range unit did not correct the trouble. Further check showed the trouble to be that shaft clamp C-920 was hitting a loose mounting screw. This screw was tightened and the motor operation was normal.
When the search-track switch on the TACU was on

SEARCH, very little movement of the spot by the spo deflection controls was possible. The trouble was found to be a high resistance in relay $\mathrm{K}-2$ of the TACU. This trouble was cleared by burnishing the contacts of $\mathrm{K}-2$ movement of the spot by the elevating in SEARCH, the reversed. The trouble was found to be that the leads on $\mathrm{R}-1-\mathrm{R}-2$ on $\mathrm{B}-2$ were reversed. The following changes were made on the equipment: 1) A $51-\mathrm{mmfd}$ capacitor was added from pin 4 of V-404 to ground, which completely eliminated the shortening of the precision sweep at short ranges. 2) The value of $\mathrm{R}-481$ was changed from 0.82 megohms to 0.62 megohms which gave a better control over the amplitude of the main sweep. 3) The value of $\mathrm{R}-516$ was changed from 0.2 megohms to 0.39 megohms which stabilized the operation of the modulation blocking oscillator, thereby eliminating the tendency of this particular radar to double trigger at some repetition rates.

MARK 25 MOD 2

U.S.S. Macon

The U.S.S. Macon reports the following operational difficulties and corrective remedies on the Mark 25/2: 1-Radar out of commission-no transmitter pulse-no magnetron current-no high voltage. A check of the power supply revealed an open filament in the high voltage rectifiers. Replacement of the tube and energizing of equipment resulted in a blown fuse ($\mathrm{F}-15$). Replaced fuse and again energized with same result-blown F-15. Further checking and testing revealed Modulator Tube (4C35) was short-
ing. After replacing this tube and putting in a new fuse, operation of the equipment returned to normal. control operating satisfactorily - slew satisfactor when operating in automatic-slew switch checked satisfactory. Megging of cables from slew switch to satisfactory. Megging of cables from slew switch to range unit revealed a short between Junction Box \#5 and radar unit assembly. Disconnected the grounded lead and replaced with a spare wire in the same cable. After obtaining slew operation, next adjusted slew potentiometer to provide a 0 to 50 yards-per-second rate of slew.
3-Radar out of commission-no sweeps, main or precision, on all scopes. Checked range sweep chassisfound no output, but input satisfactory. Tubes all tested good. Checked cable from range sweep chassis to indicators, found it shorted. Replaced shorted lead with a spare in same cable. Sweeps returned to normal in all indicators but the "A" scope. Found lead to aquadag coating in tube broken. Replaced lead and operation returned to normal in all respects.
4-The Delta E sweep would not follow director dialswould follow only up to 45°. Tried a different computer with no improvement. Checked angle sweep chassis and found R-51 and R-52 had changed value. Replaced these components and adjusted Delta E sweep and operation returned to normal.
5-Targets would appear and disappear at intervals, ringtime unstable-AFC would not lock in. All tubes checked good. Voltage checks revealed that line voltage was not constant. Inspection of regulating transformers disclosed an open filter capacitor and arcing between output leads and ground. Replaced the capacitor and insulated the output leads, after which operation was normal.

Double Check Your Tube Checker
Electron Orbit Electron Orbit
Electron Orbit
Ectronic Clearance Indicato Electronic Field Change
Electronic Supply Office
Electronic Suppl
 Officer, The
Electronic Su
 Electronics Supply System Participation Parts Program
Electronics Admoist
Electronics Administration Conference (1949) at the Bureau of Ships. Electronics Conference (1949) at the Bureau of Ships.
Electronics Conference e (190) at the Bureau of Ships..
Electronics Desig Section at Long Beach Electronics Desigennce Section at Long Beach
Electronics Dield Shen Electronics Field Change Index.
Electronics Field Electroniscs Field Change Ind
Electronics Field Changes
E.

gram and WFA- IB. W.C. No. 16 I Instruction Bulletin..
E.S.O. Library and Reproduction Facilities
gram and WFA-F.C. No. 1 N Instruction
E.S.O. Library and Reproduction Facilities
E.S.O. Monthly Column
E.S.O. Monthly Column
E.T

ET L.onks at Radiac, The (Entire May Issue.....
Extraneous Noises in Shipboard Communiation System
Field
En
Systems $\ldots \ldots .$.
Field Engineer Sez
GCA Box Sc
GCA Box Sc
GCA Box Sce
GCA Box
GCA Box Sc
GCo
Score
Soree
Score
Score
Score.
Score.
Score.
Score
Score
GCA
GCA
Improved Model FRA Alignment Procedure
Increased Distribution of NavShips 4110
Index to Electront

$$
\begin{aligned}
& \text { Index to Electron, Volue } 4 \\
& \text { Index to Electron, Voume } \\
& \text { Indicto }
\end{aligned}
$$

Indicating Dials for W.E. 164A Transmission Measur-

$$
\begin{gathered}
\text { ing Sety } \\
\text { Interference }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ing Sets. } \begin{array}{l}
\text { Interference. Reduction } \\
\text { Inventory } \\
\text { Sustory Control Progr }
\end{array} .
\end{aligned}
$$

System Control Program of The Electronic Supply
IRE President's Letter to Chief of BuShips.
JAN Teletype Nomenclature
Lines of U-H-F Performance and Operation Reports.
Lines $\ldots \ldots \ldots$
March Cover, The
Marche Iectron Cor
Marine Corps Notes

Marine Cortron, Corre Marine Cores Marine Corps Notes

Marine Corps Notes
Mark
Mark V IFF/UNB Systen (Part
Mark V IFF/UNB System (Part 2)
Mark V IFF/UNB System (Part 2)
Mark 25 Mod 2 AFC Difficulties
Mark 25 Mod 2 Indicator Plug Dities Difficulties
Mark 25 Mod 2 Radar, Field Change No Mark 25 Mod 2 Radar, Field Change No. 5.
Measurement and Reduction of Submarine Noises.
Measurement Measurement and Reduction of Submarine Noisc
Stations
Stations
Misisile Guidance Radars
Misssile Guidance Radars \dddot{M} Missilie Tracking and Plotting Systems on the
USS Norton Sound
Model $\mathrm{QHB} / \mathrm{QHBa}$
Model REM Transformer T-104 Failures
Model
Model SS-A Instruction Book Error
Model TBK Master Oscillator Oven Compartment

Model VF Field Change No. 2
Model VRT-1 Shor Memory
Model 929 Photorder

```
Models DBM/-1 Rotating Antenna Joints,
Modifcation of Models RAO-9 and RBK-14 for Use
Modifcitoonto the Model RDE (
Modifications to OKA Equipment .
Naval Coumunication Station at Wheeler Mountain,
W Washington,
Navel
avy Needs You Allive, The
Mavy Scores Again Na............
l
New Alignmen
New Books (Instruction Books)
New Model TDZ Tuning Procedure.........
Notes on Model QHB Series Trouble Shooting
```



```
Operation of Type -23497 Selector Control Unit on
Mperation of Type -23497 Selector Control Unit on
```



```
Plotting Tropical Disturbance
M Preferred Iten 
M,
l
Ra,
Faraway Places.
Radio Interference Consideration
Radio Interference Sources, An Analysis of.
Radio Point Loma at NEL %...................
Madio Remote Control Transfer Switchboards............
Racio Wheeler Mountain, Proposed Radio Relay Center 
RCM Information %ollo.....................
R Reactance Starting of High Power Filaments
```



```
Removal of Electrronic Equipments for Reconditioning
Replacing Radio Set AN/ARC-1, Che]
l
R-223/SPR Blanking Receiver ©...................
Seasoning 5J26 Magnetrons for Radar 
Single Sideband Underwater Telephone ..
Sofar in Search and Rescue Training Film
Some Technical Aspects of Radiac .............
Sonic Devise for Underwater Sediment Surveys, A..
(NAVSHIPYDCHASN) ......
Stock Numbers Conversion Program
Summary of Joint Nomenclature System (AN.
ten) for Communicationc-Elucectronic Squitem("AN
Tabulating Machine Division
```



```
Ieletypewriter Motor Removal Suggestion
Tratequmpment Gocs to Sea .........
U.H-F Transmission Losses
Use of the Echo Box $. NT, IRE Convention.
U.S.J Juneau Reports on the Model TCZ _...........
Value of Failure Data to the Electronic S
Water Sealing Electronic Cable Ends
You Can Maintain Your Electronic Equipment.)
```

```
\begin{tabular}{|c|c|}
\hline 1-26 & Bureau of Ships Contributions to Navigation \\
\hline 2-27 & rrier \\
\hline 21 & alogu \\
\hline 5-24 & Change in Diagram of Field Change No \\
\hline 2-34 & Checking U-H-F \\
\hline 4-28 & Chief of BuShips Letter to Pres, of IRE \\
\hline 9-39 & Contract Field Service Engineer, The \\
\hline 12-36 & Conversion of The U.S.S. Norton Sound \\
\hline -16 & Corrosion of Model VK Repeater Pa \\
\hline 12 & Countermeasures Informatio \\
\hline 1-33 & Danger! Model BC-610 Transmitting Equipment \\
\hline 2-34 & Deterioration of Model SA-2 Antenna M \\
\hline -9 & Direction Finder Set AN/ \\
\hline 4-20 & Disposition of Surface Vessel B1 Slides and Log Sheets \\
\hline
\end{tabular}
Are You On The Beam? \
Altack Sonar Considerations Element Replaced by Divers
Bathythermograph Summary Cards . . 
*)
Breakdown Program. The Mountain
Bringing Mahomet to The Mountain...
lol
```


Electron

VOLUME 5

PART I • ALPHABETICAL

 Model Letters： AN／ARC－1，Replacing Radio SetAN／TPS－1B，Indicator Unit Troubl AN／URR－3 Through AN／URR－8，Radio Receiving

FRA Alignment Procedure，Improved
RAO－9，Modification of for Use With the Model REM
Dual Panoramic Adaptor
 RCH，Strange Action in
RDE，Modification to the
RDZ Compont RDE，
RDZ
REM REM Dual Panoramic Adaptor，Modification of RAO－9
and RBK－14 for Use Wi ith． REM Trans－14 former T－104 Failure
 TBK Master Oscillator Oven Corpartment Overheating TCZ，Report from the U．S．S．Juneau．
DD Shock Hazard 1.
TDZ Component Failure
TDZ Tuning Procedure，New
TDZ Tuning Procedure，
TEC K－1122 Sticking
TEF Maintenance Kink
Teletypewriter：
JAN Teletype Nomenclature
 Radio and Teletypewriter Communication to Those
Faraway Places ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
General：
Antennas，Bi－Directional Rhombic，at NSS．
Carrier Controlled Aparoach Electronics Design Spection at Long Beach．．．．．．．
Frequency Tolerances（Are You On The Beam？ Frequency Tolera
Migrain Project．
Naval Communication Station at Wheeler Mountain， Washington
Noises in Ship
Noises in Shipboard Communication Systems
Norton Sound（USS），Conversion of the． Teletypewriter Communication to Those Faraway Places
Radio－Controlled Target Craft（Electronics Design Section at Long Beach）
Radio Interference at Naval Shore Stations，Measure－
Radio Interfference Considerations．

Radio Interference Sources，An Analysio of ．．．．．．．．．．．．
Radio Interference The Reduction or Elimination of．．．
Radio Relay Center，Proposed．Radio Whecler Mountain Radio Relay Center．Proposed．Radio Wheeler
Single Sideband Underwater Telephone．
Transfer Switchboards，Radio Remote Control
 Type -23497 Se
Operation of

$$
\begin{aligned}
& \begin{array}{l}
\text { Type -4tagn2 Ad Adpter Kits Navy } \\
\text { U-H-F Performance and Operation }
\end{array} \\
& \text { U-H-F Performance and Operation Reports, Lack of } \\
& \begin{array}{l}
\text { H-F Systems, Checking, } \\
\text { H-F Transmission Losses }
\end{array}
\end{aligned}
$$

RADAR
Model Letters：
AN／MPQ－5，Missile Guidance Radar
AN／MPQ－5，Missile Guidance Radar

AN／SPQ－2，Missile Guidance Radar
AN／SPQ－2，Missile Guidance Radar AN／SPQ－2，Missile Guidance Radar $\ldots \ldots$.
AN／SPS－6，Seasoning 5 J26 Magnetrons for．．．．．．．．．
AN／TPS $-1 B$ ，Noise，Interference and Target Disap－

${ }_{2-32}^{3-16}$ Gener

Model Letrers．

Bathythermograph Sensitive Eiement Replaced By
Bathythermograph Summary Card
Migrain Project
Single Sideband Underwater Telephone
Submarine Noises Measurement and Reduction of．．．．．．．．
Surface Vessel B／T Slides and Log Sheets，Disposition
Surface Vessel B／T Slides and Log Sheets，Disposition
Transmission Lines
Underwater Sediment Surveys，A Sonic Device for
2HB－1，Trouble With Relay K－103
A－F．C．No． 12 Instruction Bulletio F．
\qquad
rleston Naval Shipjard
Operation of the Electronics Ships Section at
Charleston Naval Shipyard
 Tropical Disturbances，Rad
Your Equipment Records
Countermeasures：
Countermeasures Information ．．．．．．．．
RADCM Equipment Instruction Books

Electron Tubes：
Magnetrons SJ26 for Radar Set AN／SPS－6，Seasoning Memory Tubes（Storage Tubes）
Reactance Startit
Storage Tubes
Electronic Supply Office：
Breakdown Program

Electronic Supply System Participation in
Electronics Repair Parts Proparam
E．Slectronics Library and Reproduction Facilitie
E．S．O．Monthly Column
E．S．O．Monthly Column
Inventory Control Program of The Electronic Supply System
Preferred Ite
referred Item Program，The
rocurement $\neq \ldots \ldots \ldots$
kequisitions（（operation Request）
Stock Numbers Conversion Program
Tabulating Machine Division

GCA：
GCA Box Scor
GCA Box Sor
GCA B
GCA B
GCA B
GCA B
GCA Box Score
GCA Box Score
GCore
GCA Box Score．

Navigational Aids：

AN／URD－2，Direction Finder Set
DBM／ 1 Rotating Antenna Joints
Radiac：
Radiac，The ET Looks at（Entire May Issue）．．．．．．．
Radiological Defense and The Electronics Laboratory
Technical Aspects of Radiac，Some
Test Equipment：
AN／SSM－1（ ）${ }^{\text {Electronic Repair Craft }}$ Double Check Your Tube Checker．．．．
nterference Measuring Instrument
Model 929 Photo－Cell Tester
Transmission Measuring Sets，W．E．164AA，Indicating
Dial for
Yype－49992 Adapter Kits，Navy

General：
ASESA Preferred Parts List $\ldots \ldots$.
Cinac ．Successor to the Navy Eniac
Chief of BuShips Letter to Pres．of IRE Clearance Indicator，Electronic．

Electron Orbit Electron Orbit Eletron

Electronics Admininistratio
 Electronics Conference（1950）at the Bureau of Ships．
Electronics Conference Final Report，Distribution of． E．S．O．Monthly Column
E．S．O．Monthly Column
$2-16$
$2-12$
$2-1$

Field
Field
FFied
Field
Field
F
Field Changes，Incomplete Reporting of
Field Service Sez ．
Filters，High Power，Transient Currents in
Instruction Books，New
Interference Reduction
IRE Convention
IRE Convention，US．Navy Exhibit
IRE President＇s Letter
IRE President＇s Letter to Chief of BuShips．
Larr，The；Guided Miss
Lark，Radar Guides the
Maintenance，Electronics，More About
Maintenance of Electronic Equipment
Naval Electronics，Story of $\ldots \ldots \ldots . .$.
NavShips 4110 ，Increased Distribution of
Navy Scores Again at Point Loma
Nomenclature System（＂AN＂System）for Communica－
tion－Electronic Equipment
Norton Sound（USS）．Conversion of the
O．I．R．Newsletter

Section at Long Beach）
Radio Point（Electronics
Pen
Radio Point Loma at NEL．．．．．．．．．．．．．．．．．．．
Ramparts of the Nation－Navy Electronics．
Ramparts of the Nation
Repair Craft，Electronic
Repair Parts Progran
Repair Parts Program，Box Score
Kepair Parts Program，Box Score
Repair Parts Program，Box Score
$\begin{array}{ll}1-1 & \text { Repair Parts Program，Box Scor } \\ 1-27 & \text { Repair Spaces，Shipboard } \\ \text { Ren }\end{array}$
Repair Spaces，
Safety Note．
Safety Note on Model TEC Transmitte
Short Memory
$8-12$
$5-10$
6
6
Sofar in Search and Rescue，Training Filn
Soldering Gun，Type 10695，New Tips For
8－22 Transmission Lines
8－22 Underwater Sediment Surveys，A Sonic Device for

[^0]

[^0]: Water Sealing Electronic Cable Ends．

