Handbook

Maintenance Instructions

TS-375/U AND TS-375A/U VOLTMETERS

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (BuAer or AMC). The policy for use of Classified Publications is esmblished for che Air Force in AFR 205-1 and for che Navy in Navy Regulations, Article 1509.

LIST OF REVISED PAGES ISSUED

insert latest arised pages destrot superseded pages.
NOTE: The portion of the text affered by the curcent revision is indicated by a rectical line in the outer margins of the page.

Page
Date of Latest
Page
Date of Latest
No.
Revision
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
August 1953
6-16
6-17
6-18
6-19
6-21 1 August 1953
6-22 1 August 1953
6-23 $\quad 1$ August 1953
6-24 $\quad 1$ August 1953
6-25 $\quad 1$ August 1953
6-26 $\quad 1$ August 1953
6-27 1 August 1953
6-28 $\quad 1$ August 1953
6-29 1 August 1953

* The asterisk indicares pages sevised, addcd or deleted by the current revision.

TABLE OF CONTENTS

Paragraph Page
List of Revised Pages Lsoued A
List of Illustrations. iii
List of Tables. iii
Unsatisfactory Reports iv
Contractual Guarantee v
SECTION I. GENERAL DESCRIPTION

1. Purpose of Handbook 1-1
2. Purpose of Equipment 1-1
3. Equipment Supplied 1-1
4. General Description 1-2
5. Unit Description 1-2
a. A-C Probe MX-6G1/U 1-2
b. D-C Probe MX-660/U 1-2
c. Power Cable CX-337/U (8') 1-2
d. Test Leads CX-529/U 1-2
e. Ground Prod 1-2
f. Alligator Clip 1-2
6. Characteristics 1-2
a. Power Supply 1-2
b. D-C Ranges -Positive or Negative Polarity 1-2
c. A-C Ranges 1-2
d. Input Connections 1-2
e. Frequency Range 1-2
f. Scales 1-2
g. Operaring Characteristics 1-2
7. Included Spares 1-2
SECTION II. OPERATION AND ADJUSTMENT
8. General 2-1
9. Controls 2-1
10. Terminals and Probes 2-1
11. Input Connecrions 2-1
a. Grounding 2-1
b. D-C Measurements 2-1
c. A-C Measurements 2-1
12. Input Impedances 2-4
13. Accuracy 2-4
a. General 2-4
b. A-C Waveform Errors 2-4
c. Modulasion Error 2-5
14. Transient Disturbances 2-5
a. Surges 2-5
b. Corrective Measures 2-5
c. Noticeable Effece 2-5
15. Input Overloads 2-5
16. Operating Notes 2-5
SECTION III. THEORY OF OPERATION
17. General 3-1
18. Block Diagram 3-1
19. Power Supply 3-2
20. D-C Amplifier Section. 3-2
21. Switch Section 3-5
22. D-C Probe 3-6
23. A-C Probe 3-6
24. Indicating Instrument 3-8
Paragraph Page
25. Minor Components 3-8
a. Secondary Factors 3-8
(1) Compensating Diode 3-8
(2) Zero Balancing Adjustment 3-8
(3) 1.2 Volt A-C Range Adjustment. 3-8
b. Stray Voltage Effects 3-8
c. Calibration Adjustments on Voltmeter TS-375A/U 3-9
SECTION IV. MAINTENANCE
26. Routine Performance Check 4-1
27. Required Test Instruments. $4-1$
28. Detailed Inspection Procedure. 4-1
a. Removal $4-1$
b. Grid Current 4-1
c. L.oose Tube Elements 4-1
d. A-C Probe Blocking Capacitor L.eakage 4-1
e. Amplifier Gain 4
f. Tube Testing 4-2
g. Voltage, Current and Resistance Checks. 4-2
29. Adjustments (internal) 4-2
a. Zero Balance Adjustment 4-2
b. 1.2 Volt Range Calibration Adjustment 4-2
c. Amplifier and overall a-c adjustment. 4-2
SECTION V. SUPPI.EMENTARY DATA
30. Special Measurements 5-1
a. Megohm Resistance Measurement. 5-1
b. Capacitance Measurement 5-1
c. Inductance Measurement 5-2
d. Low A-C Voltage Measurements. 5-2
e. I.ow D-C Current Measurements. 5-2
f. Decibel Measurements 5-2
31. Vacuum Tube Complement 5-3
SECTION VI. TABI.E OF REPLACEABI.E PARTS
32. General 6-1
33. Ordering Spare Parts. $6-1$
34. Reference Symbols 6-1
35. Color Code Charts for Resistors and Capacitors 6-1
SECTION VII. DRAWINGSINDEX

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Voltmeter TS-375/U, Major Units 1-0
1-2 Voltmeters TS.375/U and TS-375A/U, Front Panel 1-3
1-3 Voltmeter TS-375/U, Indicating Instrument 1-4
2-1 Front Panel Showing Controls 2-0
2-2 Front View Showing A-C and 2-2
2-3 Front View Showing Test Leads and Power Cable Connected for Use 2-2
2-4 Typical Use of A-C Probe at High Frequencies 2-3
2-5 A-C Input Connection Variations with Frequency 2-4
3-1 Block Diagram $3-0$
3-2 D-C Amplifier, Simplified Circuit 3-1
3-3 D-C Amplifier, Pracrical Circuit. 3-2
3-4 Switch Section, Switching Functions 3-3
3-5 A-C Probe Section, Rectifier Action 3-4
4-1 Trouble Analysis Chart for Voltmeters TS-375/U and TS-375A/U $4-0$
5-1 Voltmeter TS-375/U, Internal Rear Oblique View $5-4$
5-1 A Voltmeter TS-375A/U, Internal Rear Oblique View. 5-4A
5-2 Volometer TS-375/U, Panel Underside 5-4B
5-2A Voltmeter TS-375A/U, Panel Underside 5-5
5-3 Voltmeter TS-375/U, Chassis Underside. 5-6
5-3A Voltmeter TS-375A/U, Chassis Underside 5-6A
5-4 Voltmeter TS-375/U, Component Locations, Panel Resistor Deck 5-7
5-4A Voltmeter TS-375A/U, Component I.Ocations, Panel Resistor Deck 5-7
5-5 Volometer TS-375/U, Component Locations, Chassis Resistor Deck 5-7
5-5A Volometer TS-375A/U, Component Locations, Chassis Resistor Deck 5-7
5-6 Frequency Correction Curve 5-8
5-7 A-C Probe Input Impedance Characteristic 5-9
5-8 Voltmeters TS-375/U and TS-375A/U, Voltage and Resistance Chart 5-10
5-9 Volometers TS-375/U and TS-375A/U, Tube Elment Current Chart 5-10
5-10 Revistance Measurement 5-11
S-11 Capacitance and Inductance Measurement 5-12
5-12 Decibel Chart 5-13
7-1 Volometer TS-375/U, Schematic Diagram. 7-1
7-2 Voltmeter TS-375/U, Practical Wiring Diagram 7-3
7-3 Voltmeters TS-375/U and TS-375A/U, Dimensional Drawing 7-5
LIST OF TABLES
Table Title Page
1-1 Equipment Supplied and Accessories 1-1
2-1 Input Impedances 2-4
2-2 Specification Accuracy 2-4
2-3 Maximum Input Overloads. 2-5
5-1 Suggested D-C Current Ranges 5-2
5-2 Functional Tube Complement. 5-3
5-3 Technical Operating Characteristics 5-3
6-1 List of Manufacturers 6-2
6-2 Color Code Charts for Resistors and Capacitors 6-2A
6-3 Table of Replaceable Parts. 6-3

UNSATISFACTORY REPORT

FOR U. S. AIR FORCE PERSONNEL
In the event of malfunctioning, unsatisfactory design or unsatisfactozy installation of any of the component units of this equipment, or if the material contained in this book is considered inadequate or erroneous, an Unsatisfactory Report, AAF Form No. 54 or a report in similar form shall be submitted in accordance with the provisions of Army Air Force Regulation No. 15-54, listing:

1. Station and organization.
2. Nameplate data (type number or complete nomenclature if nameplate is not attached to the equipment).
3. Date and nature of failure.
4. Radio model and serial number.
5. Remedy used or proposed to prevent recurrence.
6. Handbook errors or inadequacies, if possible.

FOR U. S. NAVY PERSONNEL
Report of failure of any part of this equipment during its guaranteed life shall be made on Form NAVAFR 4112 "Report of Unsatisfactozy or Defective Material," or a report in similar form, and forwarded in accordance with the latest instructions of the Bureau of Aeronautics. Such reports of failure shall include:

1. Reporting activity.
2. Nameplate data.
3. Date placed in service.
4. Part which failed.
5. Nature and cause of failure.
6. Remedy used or proposed to prevent recurrence.

CONTRACTUAL GUARANTEE

The Contractor guarantees that at the time of delivery thereof the articles provided for under this contract will be free from any defects in material or workmanship and will conform to the requirements of this contract. Notice of any such defect or non-conformance shall be given by the Government to the Contractor within one year of the delivery of the defective or nonconforming article, unless a different period of Guaranty is specified in the schedule. If required by the Govertnment within a reasonable time after such notice, the Contractor shall with all possible speed correct or replace the defective or nonconforming article or part thereof. When such correction or replacement requires transportation of the article or part thereof, shipping costs, not exceeding usual charges, from the delivery point to the Contractor's plant and return, shall be borne by the Contractor; the Government shall bear all other shipping costs. This Guaranty shall then continue as to correct or replacing articles or, if only parts of such articles are corrected or replaced, to such corrected or replacing parts, until one year after the date of redelivery, unless a different period of Guaranty is specified in the schedule. If the Government does not require correction or replacement of a defective or nonconforming article, the Contractor, if required by the contracting officer within a reasonable time after the notice of defect or non-conformance, shall repay such portion of the contract price of the article as is equitable in the circumstances.

Figure I-I. Voltmeter TS-375/U, Major Units

SECTION I

GENERAL DESCRIPTION

1. PURPOSE OF HANDBOOK.

a. This handbook describes the operation, maintenance and repair of Voltmeters TS-375/U and TS-375A/U.
b. Since Voltmeters TS-375/U and TS-375A/U have the same function, and are electrically and mechanically interchangeable except for certain internal adjustments, the instructions are based upon Voltmeter TS-375/U but apply equally to Voltmeter TS-375A/U. Where specific differences occur between TS-375,U and TS-375A/U refcrence will be made to the specific Voltmeter under discussion.

2. PURPOSE OF EQUIPMENT.

a. Voltmeter TS-375 U is a general-purpose high-impedance a-c and d-c volmeter for servicing and testing radio and radar equipment. It is intended particularly for voltage measurements where the sensitivity or frequency range of standard voltmeters is insufficient, for
example d-c grid bias voltage, audio or radio-frequency voltage.
(1) The input impedance is sufficiently high to avoid consideration of the instrument current drain upon the circuit undergoing measurement. For example in circuits where the current drain of a 20,000 ohms-per-volt voltmeter would cause a serious error or operational upset to the circuit, this instrument can be used without difficulty.
(2) For anc measurements the frequency range includes the radio frequency spectrum up to approximately 300 megacycles, whereas standard a-c voltmeters have a useful upper frequency limit of a few thousand cycles-per-second.

3. EQUIPMENT SUPPLIED.

The major units of the equipment are listed in Table 1-1, and illustrated in figure 1-1. The weight given for the equipment unit is the complete weight including the individual weights of the accessory units. The equipment

TABLE 1-1. EQU\&PMENT SUPPLIED

Quantity Per Equipment	Name of Unit	Army-Navy Type Designation	Overall Dimensions (in Inches)			Weight (pounds)	Numerical Series of Reference Symbols
			Height	Width	Length		
1	Voltmeter	TS-375/U or TS.375A/U	$101 / 2$	101/2	6\%/9	18.5	101-199
ACCESSORIES							
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	PROBES: A-C Probe D.C P obe Power Cable Test Lead (red) Test Lead (black) Ground Prod Alligator Clip	$\begin{gathered} \text { MX-661/U } \\ \text { MX-660/U } \\ \text { CX-337/U (8') } \\ \text { CX-529/UJ } \\ \text { CX-529/U } \\ - \end{gathered}$			54 53 96 60 60 13,2 $11 / 2$	0.3 0.1 0.4 0.1 0.1 0.03 0.03	
$\begin{aligned} & 5 \\ & 1 \\ & 2 \\ & 4 \\ & 8 \\ & 2 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	SPARES: Fuses Diode Rectifier Binding Post Cap Pilot Lamp Rubber Gasket Nut Lock Washer Stud-brass Nut			$1 / 6$ $B / 26$ 1/2 3/4 1/16 $8 / 6$ $3 / 32$ $3 / 4$ 8/16	$\begin{aligned} & 1 \\ & 11 / 2 \\ & 1 / 2 \\ & 11 / 6 \\ & 3 / 2 \\ & 3 / 6 \\ & 1 / 32 \\ & 3 / 2 \\ & 1 / 22 \end{aligned}$	$\begin{aligned} & .02 \\ & .02 \\ & .04 \\ & .02 \\ & .0003 \\ & .014 \\ & .0012 \\ & .035 \\ & .0031 \end{aligned}$	$\begin{aligned} & \mathrm{F}-102 \\ & \mathrm{~V}-107, \mathrm{~V}-108 \\ & - \\ & 1-101,1-102 \end{aligned}$

unit includes all operating accessories normally required for use as a voltmeter.

4. GENERAL DESCRIPTION.

a. The Voleneter TS-375/U, shown in figure 1-2, consists of a panel on which are mounted the operating controls, two compartments for stowage of the d-c and a-c probes, a third compartment for the line fuses and general accessory stowage, an indicating instrument, and a receptacle for the power line cord.
b. CASE.-The instrument assembly is mounted in a drawn alurninum case and covered, when not in use, by a drawn aluminum cover gasketed to the case The case-to-cover gasketing is designed to withstand immersion without leaking. The cover is separable from the case for convenience when the instrument is in use. The instrument can be operated in the vertical or horizontal position.
c. ACCESSORIES.-The line cord, test leads and instruction book are stowed in the case cover. The probes are stored in their marked compartments. All other operating accessories such as clips, ground prods, etc. are stowed in the accessory stowage compartment.

5. UNIT DESCRIPTION.

a. A-C PROBE MX-661/U.-The a-c probe contains a diode rectifier tube and d-c blocking capacitor arranged to provide a minimum frcquency error at high frequencies. For the low-frequency panel terminal connection a larger internal blocking capacitor is used.
b. D-C PROBE MX-660/U.-The d-c probe contains an isolating resistor (five megohms) to minimixe disturbance to circuits containing a-c in which the d-c voltage is being measured.
c. POWER CABLE CX-337/U (8').-This is an 8 foot two conductor rubber covered cord with a female connector at one end and a 2 pin male connector at the other end.
d. TEST LEADS CX-529/U.-The test leads consist of one red and one black lead with forked terminals at one end to fit the panel binding posts and test prods at the other end.
e. GROUND PROD.-The ground prod is a spring clip to fit on the ground ring of the a-c probe. It is used for the ground connection to terminals on the component under test.
f. ALLIGATOR CLIP.-- These clips may be used on the test prods of the test leads CX-529/U for holding the contacts in position when taking voltage readings.

6. CHARACTERISTICS.

a. POWER SUPPLY.-105 to 125 volts, a-c only, 50 to 1600 cycles, power demand at 115 volts, 28 watts.
b. DC RANGES.-POSITIVE OR NEGATIVE POI ARITY; $1.2,3,12,30,120$ and 300 volts, with a constant input resistance of 30 megohms.
c. A-C RANGES.-1.2, 3, 12, 30 and 120 volts with a 5 megohm resistance on all ranges shunted by approximately five mmf. when using the probe externally. The effective shunt resistance and shunt capacitive reactance vary with frequency, reducing in value as the frequency is increased See figure 5-7 for the probe input impedance vs. frequency.
d. INPUT CONNECTIONS. - The probe stowage clips in the stowage compartments are arranged to connect the probe tips to the panel terminals when the probes are stowed. The input voltage to be measured is then connected to the panel terminals using standard test leads or wires. In high-frequency circuits, however, the probes must be used for connection to minimize disturbance to the high frequency circuit.
e. FREQUENCY RANGE.-The a-c section is usable from 40 cps . to 50 kc using the panel terminals, and 10 kc to 150 mc using the probe.
f. SCALES.-The indicating instrument is calibrated with three scale arcs, two additional arcs being required because of diode rectifier curvature on the lower a-c range. The lower arc applies to the 1.2 volt a-c range only, the center arc to the 3 -volt a-c range only, and the upper arc to all other ranges a-c and d-c. See figure 1-3.
g. The general operating characteristics are summarized in table 5-3.

7. INCLUDED SPARES.

a. SPARES BOX. -The small spares box is mounted inside the equipment under the spare parts compartment (See figure 5-1). It is used for stowing small spare parts such as small rubber gaskets for case sealing, nuts, lockwashers, etc., that would not be normally obtainable and would be difficult to fabricate under service conditions. In the TS-375A/U these spare parts are located in the Accessoty Stowage Compartment (See figure 1-2).
b. If spares are available from stock do not use the included spares. Replenish the included spare complement whenever stock spares become available.
c. QUANTITY AND TYPES OF TUBES AND LAMPS.--Six vacuum tubes, two regulator tubes and two pilot lamps are required for operation of the equipment. Tubes and lamps are listed in detail in the following table.

TUEES AND INDICATOR LAMPS

Quantity Used	Spares Supplied	Designation	Symbol Number
2	None	6SJ7	V-101, V-102
1	None	6SL. 7	V-103
2	,	CK606	V-107, V-108
2	None	991	V-105, V-106
2	4	Lamp	I-101, 1-102
1	None	$5 \mathrm{Y}_{3}$	V-104

(A) ACCESSORY STOWA GE COMPARTMENT
(B) LEADOUT GROMMET FOR D-C PROBE
(C) LEADOUT GROMMET FOR A-C PROBE
(D) D-C PROBE
(E) A-C PROBE
(F) INDICATING INSTRUMENT
(G) D-C PANEL TERMINALS
(H) A-C PANEL TERMINALS
(J) POWER CABLE RECEPTACLE
(K) ZERO ADJUSTER
(L) STAND BY HEATER PILOT LAMP
(M) LINE PILOT LAMP
(N) LINE SWITCH
(P) SELECTOR SWITCH
(Q) RANGE SWITCH
(R) RUBBER GASKET

Figure 1-3. Voltmefer 75-375/U, Indicating Instrument

Figure 2-1. Front Panel Showing Controls

SECTION II

OPERATION AND ADJUSTMENT

1. GENERAL.

a. Unlatch tha case cover by opening the four snap catches at the sides. Open and remove the cover by disengaging the snap catches.
b. Check the indicating instrument zero setting. If necessary reset the mechanical zero adjusting screw (See figure 1-3).
c. Unwind the power cable from inside the cover, plug into the panel power line receptacle, and connect to the power outlet. Operate only from 105- to $125-$ volt, 50 to 1600 -cycle service power.
(1) I he white (heater) pilot should light with the line switch "OFF".
(2) An internal electrical heater is included within the instrument to reduce the internal relative humidity when not in use. The heater is connected to the supply line when the line switch is in the OFF position and disconnected in the ON position.
d. Turn on the line switch (the red pilot light should light), set the selector and range switches to the desired position for the particular measurement being made. Allow at least a 30 -second warmup period.
e. Short circuit the input terminals being used (a-c or $\mathrm{d}-\mathrm{c}$) and zero the instrument with the panel zero adjuster. Shorting the input circuit during zero adjustment is recommended to avoid the influence of stray leakage or induced voltages which might otherwise lead to setting to a false zero. This is particularly important on low a-c ranges. The zero adjustment is not affected between d-c ranges and no readjustment should be necessary between d-c ranges. Between a-c ranges, however, a slight zero shift may take place, and for accurate measurements zero readjustment on each a-c range is recommended.
f. If the measurement, a-c or d-c, is to be made in a circuit containing any a-c component of radio frequency (above 50 kilocycles) open the corresponding probe comparment and unclip the probe for use.
g. Alternative use of panel terminals and probes is illustrated in figure 2-2 and the proper seating of the probes in their holders is shown in figure 2-3.

2. CONTROLS.

a. The control panel shown in figure 2-1 contains the following operating controls.
(1) Selector Switch: a three-position rotary switch marked "D-C+", "D-C-", and "A-C".
(2) Range Switch: a six-position rotary switch marked with the ranges in volws, "1.2", " 3 ", " 12 ", " 30 ", " 120 ", and " 300 " volts.
(3) Line Switch: a two-position toggle switch marked "LINE: ON".
(4) Zero Adjuster: an electrical zero adjusting potentiometer rheostat marked "ZERO ADJUST". This adjustment should not be confused with the mechanical zero adjusting screw on the indicating instrument.

3. TERMINALS AND PROBES.

Voltage to be measured may be connected either to the panel terminals or to the probe. When the probe is used it is removed from its comparument and applied to the circuit, as with a standard test lead. When the panel terminals are used the probe is clipped into its holder inside the stowage compartment, which establishes an intemal connection to the terminals.

4. INPUT CONNECTIONS.

a. GENERAL.--The one input terminal of both a-c and d-c input circuits is grounded to the chassis of the instrument. Consequently the voltmeter is adaptable only to measurements between circuit points one side of which is grounded, or which may be connected to the voltmeter chassis safely and without disturbance to the circuit.
b. D-C MEASUREMENTS.-D-c voltages of either polarity may be measured by setting the selector switch to the $d-c$ position indicating the polarity to be applied to the ungrounded input terminal. For measurements in circuits containing radio frequency voltage use the d-c probe for connection to the ungrounded side; in straight d-c circuits either the panel input terminal or the probe may be used. In either case the ground connection is made to the ground panel terminal.
c. A-C MEASUREMENTS.
(1) For measurements at frequencies lower than 10 kc the panel terminals must be used.
(2) For measurements at frequencies higher than 50 kc the probe must be used.
(3) For measurements from 10 kc to 50 kc either the probe or the panel terminals may be used, as convenient.
(4) Below one megacycle the ground connection may be made to the panel ground terminal or to the probe ground ring, as convenient.
(5) Above one megacycle the ground connection must be made to the probe ground ring, and kept as short in length as feasible.
(6) In general as the frequency increases toward the top limit of 300 megacycles the input lead lengths,

Figure 2-2. Front View Showing A-C and D-C Probes and Power Cable Connected for Use

Figure 2-3. Front View Showing Test Leads and Power Cable

Figure 2-4. Typical Use of A-C Probe of High Frequencies
both ground and ungrounded sides, must be made shorter. For example at 40 megacycles leads three or four inches long are permissible, but above 100 megacycles the prod tips proper must contact the circuit directly. Thus at the higher frequencies it is not possible to measure voltage between circuit points that are widely separated. The ground ring spring clip can serve as a ground prod up to 100 megacycles, but at higher frequencies direct contacting to the ground ring is recommended. The alligator spring clip may be used on the ungrounded prod at frequencies not exceeding 50 megacycles. Figure 2-4 illustrates a typical measurement across the trimmer on a variable capacitor.
(7) On frequencies above 100 megacycles, the loading on the circuit under test may be reduced by removing the probe tip. This may be unscrewed and laid aside momentarily in the spare parts compartment. Connection can then be made to the threaded extension protruding thruugh the polystyrene bushing at the end of the probe.
(8) Any method of connection permissible to a certain maximum frequency may be used at any lower frequency down to the bottom frequency limit of 10 cycles, except that the panel terminals nust be used below 10 kc .
(9) The readings are essentially without frequency error from 50 cycles to 150 megacycles. Above and bielow these frequencies correction factors as indicated by the curves of figure 5-6 may be applied to extend the frequency range from 10 cps to 300 mc .
(10) The foregoing a-c input limitations are summarized diagrammatically in figure 2.5.

Figure 2-5. A-C Input Connection Variations with Frequency

5. INPUT IMPEDANCES.

The input circuit impedances for both d-c and a-c input circuits using the various methods of connection are listed in Table 2-1.

TABLE 2-1. INPUT IMPEDANCES

D-C SECTION

A-c resistance (isolation resistor). 5 megotms D-c resistance (total). 30 megohms Probe inpur capacitance............................negligible Panel Terminal input capacitance........ 25 mmf. approz.

A-C SECTION

Probe resonant frequency. 600 mc approz.
Probe inpur capacitance. 5 mmf. appror.
A.c resistance............................ 5 megohms (max)* D.c resistance (leakage).10,000 megohms minimum Panel Terminal input capacitance. 70 mmf. approx. * Varies with frequency (see figure 5-7).

6. ACCURACY.

a. GENERAL.-The accuracies for the various ranges and frequencies are tabulated in Table 2-2. If a check on a reliable voltage standard indicates that the error anywhere exceeds the applicable tolerance, the instrument should be repaired.

TABLE 2-2. ACCURACY

SECTION	PERCENT OF FULL SCALE RANGE
D-c Section, all ranges	3\%
A.c Section, all ranges 10 to 50 cps	
10 to 50 Cps 50 cps to 50 mc	S\%, with correcrion Curve 4\%, withour correction
50 mc to 150 mc 50 mc to 150 mc	6\%, without correction
50 mc to 150 mc 150 mac to 300 mc	3\%, witb correction curve 8\%, with correction curve
NOTE:-The 1 -2-volt a-c range is internally adjustable and carries no specific aecuracy in sexvice, although it was initially adjusted to conform to the above sable.	

b. A-C WAVEFORM ERRORS.

(1) WAVE DISTORTION. - The diode rectifier responds to the positive peak value of the applied voltage whereas the indicating instrument is calibrated in rms value of a pure sine wave. Thus if the applied waveform is other than a pure sine wave an error may be expected in the indicated volmeter reading.
(2) DISTORTED WAVE VALUES.-With dis torted waveforms the reading may be interpreted as
0.707 times the positive peak of the voltage being measured.
(3) MAXIMUM ERROR.-With the worst possible phase distribution of harmonic components in the applied waveform, the maximum error cannot exceed the sum of the percentages of all the harmonics. For example, if the total harmonic content is known to be less than 10 percent, the waveform error can be anywhere between 0 and 10 percent. The error may either increase or decrease the reading.
c. MODULATION ERROR. - When modulated waveforms are applied the diode rectifier will respond to the recurrent modulation peaks. The reading will thus be high by an amount dependent upon the percentage modulation and the waveform of the modulation envelope. This error may be considered approximately equal to the percentage modulation if the modulation envelope is a sine wave.

7. TRANSIENT DISTURBANCES.

a. SURGES. - Occasionally the effect of transient surges from power line switches or other sparking devices will be experienced. They are evidenced by erratic motions of the indicating instrument. If sufficiently strong to project through the intemal bypassing they may be injected through the line connection to the instrument; but generally they are introduced through inductance in the ground return circuit mutual to the input and the path of the surge.
b. CORRECTIVE MEASURES.-The following corrective measures are suggested.
(1) Locate the source of the disturbance and if possible shut down the offending device during measurements. Such devices are potential radio noise generators and should be corrected as soon as discovered.
(2) Ground the instrument chassis by physically grounding one of the input ground terminals.
(3) Shorten the ground lead to the measured circuit as much as possible.
(4) Place line filters in the power cord to the instrument, and if possible in the power connection to the device being measured.
c. NOTICEABLE EFFECTS.-Transient surges will have no effect unless the surge peak is larger than the peak value of the input voltage being measured. Their effect will therefore generally only be noticed with low or zero applied input voltages.

8. INPUT OVERLOADS.

a. TWO TYPES OF OVERLOAD.-The instrument may be overloaded by applying an excess voltage of the
type (d-c or a-c) being measured, which will drive the indicating instrument off scale, or by applying an excess voltage of opposite type, which will not indicate on the instrument but may cause internal damage.
b. The maximum overloads listed in Table 2-3 should not be exceeded under any circumstances.

TABLE 2-3. MAXIMUM INPUT OVERLOADS

Range	Max. Applied D-C (Volts)	Max. Applied A-C (Volts)
1.2	D-C	12
3	D-C	30
12	D.C	120
30	D-C	300
120	D-C	500
300	D-C	500
1.2	A-C	200
3	A-C	300
12	A-C	400
30	A-C	500
120	A-C	500
		500
		500

c. D-C OVERLOAD. - Overload on the d-c ranges can result in burnout of the d-c probe resistor.
d. A-C OVERLOAD.--Overloads on the a-c ranges can result in burnout of the a-c probe resistor, flashover in the probe blocking capacitor or destruction of the diode rectifier (V-108).

9. OPERATING NOTES.

a. CIRCUITS CONTAINING BOTH A-C AND D-C.-The d-c ranges are insensitive to a-c components in the input voltage, and conversely the a-c ranges are insensitive to d-c components. Thus if a circust to be measured contains both a-c and d-c, both input circuits may be connected simultaneously and the two components of voltage measured independently by simply switching between a-c and d-c positions on the selector switch. As the ground connection is already common this type of connection simply requires connection of both ungrounded input terminals together.
b. D-C EFFECT.-When the a-c input terminals are connected to a source of a-c containing d-c the indicating instrument may momentarily jump off scale. This is caused by charging of the input blocking capacitor and is a normal operating characteristic.
c. HAND CAPACITANCE.-When measuring highfrequency voltages in circuits where capacitive loading must be kept to a minimum, the a-c probe should be held with the hand behind the white line around the probe case. This will minimize hand capacitance which otherwise would add two to three mmf of shunt capacitance.

Figure 3-1. Voltmeters TS-375/U and TS-375A/U, Block Diagram

SECTION III

THEORY OF OPERATION

1. GENERAL.

a. UTILITY_-_Voltmeter TS-375/U is a testing voltmeter that differs from conventional direct indicating volmeters primarily in high input impedance (resulting in low current drain from the circuit being measured) and frequency range on alternating-current voltage measurements. If, for example, it is desired to measure the bias or signal level on an amplifier-tube grid, connection of a conventional voltmeter would demand so much operating current from the grid circuit that the voltage values indicated would be meaningless and operation of the circuit would be affected seriously. In this and similar cases use of this instrument is valuable.
b. INPUT. IMPEDANCE.-High input impedance is obtained through use of an amplifier placed between the circuit being measured and the instrument actually giving the indication. No voltage gain is necessarily obcained but the amplifier can be made to respond to an input current far too small to drive the indicating instrument directly; a power gain is thereby derived. For example on the 3 -volt d-c range, full scale indication requires 300 microwatts of energy in the indicating instrument circuit, whereas the vacuum tube voltmeter as a whole demands only 0.3 microwatt from the measured circuit, a power gain of 1000 .
c. METHOD OF A-C MEASUREMENT.-The ir stument including the amplifier is fundamentally a direct current device, and is applied directly to the point of measurement in the case of d-c voltages. It is adapted to alternating current measurements by adding a diode recifier between the point of measurement and the amplifier input. A-c input to the rectifier then produces a direct current resultant for operation of the amplifier in the samè fashion as for measurement of d-c voltages.
d. STABILITY.-The requirement for retention of calibration under various conditions of operation such as tube changes, line voltage fluctuation, etc. requires an amplifier having an unusual degree of stability. Any change of gain (ratio of output to input voltage) would directly influence accuracy of indication. The amplifier circuit was specificlly developed for calibration stability and employs a compound feedback action wherein vacuum tube and supply voltage variations have negligible effect.
e. RECTIFIER LOCATION.-An important function of the instrument is the measurement of r - f voltages at frequencies as high as practicable. As a-c voltage is converted to d.c by the rectifier tube the attainment of frequency range is directly dependent upon applying the
rectifier at or as close to the point of measurement as possible. For this reason the diode rectifier tube is mounted in a special test probe for connection to the point of measurement with a minimum of conductor length. The resultant $\mathrm{d}-\mathrm{c}$ is then fed back to the insturment for measurement.

2. BLOCK DIAGRAM.

a. The six major circuit sections are shown in the block diagram (See figure 3-1). Energy from the circuit under test is picked up through either probe, is subdivided in the switch section and fed to the input amplifier grid. The power supply energizes the amplifier which in turn operates the indicating instrument in proportion to the potential at the amplifier input grid.
b. BASIC CIRCUITS.-The equipment unit for purposes of explanation can be subdivided into six basic circuit sections, as follows:
(1) Power Supply
(2) D-C Amplifier
(3) Switch Section
(4) D-C Probe
(5) A-C Probe
(6) Indicating Instrument
c. POWER SUPPLY.-(See figure 3-1.) The power supply is designed to supply the d-c amplifier with the necessary supply voltages for its operation.
d. D-C AMPLIFIER.-(See figures 3-2 and 3-3.) The d-c amplifier is designed to receive the input voltage to be measured from the probe without drawing appreciable current from the circuit being measured, and drive the relatively insensitive indicating instrument in re sponse to this input voltage. The amplifier must have a high degree of stability to maintain calibration accuracy.

Figure 3-2. D-C Amplifier, Simplified Circuif

Figure 3-3. D-C Amplifier, Practical Circuil
e. SWITCH SECTION.-(See figure 3-4.) The switch soction comprises the range and function selector switches, together with the nacessary group of accurately adjusted resistors to obtain the various ranges. The range switch is actually a calibrated attenuator located between the input probes and the amplifier to divide the input voltage for range selection. The selector switch selects between the d-c and the a-c probe, and performs certain other circuit switching functions necessary to each type of measurement. Refer to paragraph 5 of this section for details.
f. D.C PROBE.-The d-c probe is similar in construction to a standard test probe except that an isolating resistor is built into the tip to minimize capacitive loading when connected to circuits containing high frequency volmages.
g. A-C PROBE.-(See figure 3-5.) The A-C Probecontains a diode type of rectifier tube for converting a-c voltages to d-c. It is designed specifically to measure a-c volmages at the highest possible frequency by minimizing the inherent distributed inductance and capacitance between the rectifier tube elemenes and the point of measurement.
b. INDICATING INSTRUMENT.-The Indicating Instrument operates from the output of the d-c amplifier, and is calibrated in terms of the various voltage ranges, d-c and a-c.

3. POWER SUPPLY.

a. The power supply is a conventional assembly of power transformer, full-wave rectifier tube and capacitorresistor filter circuit.
b. VOLTAGE SUPPLIED.-The following voltages and currents are supplied to the amplifier section:
(1) 250 volts $\mathrm{d}-\mathrm{c}$ at 7 ma . for amplifier plate supply.
(2) 6.3 volts a-c at 1.35 amperes for amplifier and diode tube heaters and the "on" pilot light (I-101).
c. LINE SWITCH.-The line switch (S-101) is arranged to connect two internal heater resistors ($\mathrm{R}-128$ and R-129) when in the "OFF" position. This serves to keep the interior of the instrument dry when not in operation. The series connected "OFF" pilot light (I-102) indicates when the heaters are in operation. With this switch in the "ON" position, the red pilot light is energized through the power transformer and the internal heaters are disconnected from the power line.
d. FILTER ELEMENTS.-Because of the operating characteristics of the amplifier it is not necessary to regulate the plate voltage supply or to completely filter the power rectifier output. A filter resistor ($\mathrm{R}-105,5100$ ohms) is used instead of the customary filter reactor, and lower values of filter capacitor (C-101 and C-102, 2 mfd . each) than usual are used.
e. PLATE VOLTAGE.-Because of the amplifier circuit ground point the negative $(-)$ side of the plate voltage supply is not grounded to the chassis as is common practice in radio and radar power supplies. Ground potential is approximately 100 volts from the negative $(-)$ side and 150 volts from the pusitive (+) side, giving the overall plate supply voltage of 250 volts.
f. TRANSIENTS.-Under certain conditions of operation transient voltages (radio noise) may be injected into the instrument through the line cord connection. To minimize this effect the line is by-passed to the chassis at the line cord connector (C-108 and C-109, 510 mmf each). In addition the negative (-) plate supily lead is by-passed to the chassis ($\mathrm{C}-107, .02 \mathrm{mfd}$.) to isolate low frequency transients and line surges that cannot be by-passed effectively on the line side of the transformer.

4. D-C AMPLIFIER SECTION.

a. OBTAINING STABILITY.-The amplifier is a compound feedback circuit combining regeneration and degeneration to obtain gain stability. Whenever gain stability is desired it is general amplifier practice to employ an amplifier having a gain much larger than the final gain desired, and degenerating the excess gain by reverse feedback from the output back to the input end. In theory the higher the gain inherent in the amplifier and the greater the resultant degeneration the greater the overall stability in the face of changes in the gain ratio of the amplifier proper. Thus stability is in part a problem of obtaining a high gain so that the advantages of a high degree of degeneration can be realized.

Figure 3-4. Switch Section, Switching Functions
b. REGENERATION. - In the compound feedback circuit the additional gain necessary for stability is obtained by regeneration. By this method a gain ratio far greater than the actual gain of the amplifier rubes proper can be realized.
c. CIRCUIT DESCRIPTION.-The action of the amplifier is illustrated by the simplified functional diagram of figure 3-2. The circuit is essentially a bridge with the two amplifier tubes and the two plate resistors forming the four bridge arms. The d-c input voltage is impressed upon the control grid of the left hand amplifier tube (V-101) while the right hand amplifier tube (V-102) serves as a compensating tube to minimize supply voltage variations and drift effects upon the bridge balance. The regenerative action is obtained by cross-connecting the plates and screen grids of the tubes in the manner of a multi-vibrator type of oscillator. The screen grids then serve as secondazy control electrodes rather than as screen grids in the conventional sense. The cross-connected resistor ($\mathrm{R}-104$) serves as a control of the degree
of regeneration obtained by loading the tube plate circuits. The cathode-connected suppressor grids serve to suppress secondary emmission effects in the conventional manner.
d. DEGENERATION.-Degeneration is obtained by conductively coupling the plate of each tube to its control grid through coupling batteries. The grid of V-101 is coupled through the input circuit whereas the control grid of V-102 is directly connected to the negative (-) end of its coupling battery. The output indicating voltmeter is connected between the negative (-) ends of the coupling batteries so that bridge unbalance in response to an input voltage will supply an unbalance current to the voltmeter circuit for indication.
e. VOLTAGE POLARITY.-The voltage appearing across the output voltmeter in response to an input voltage has a polarity in opposition to the input polarity, as indicated by the polarity signs on the input and indicating instrument circuits. Thus the voltage appearing between the two control grids is the difference voltage

Figure 3-5. A-C Probe Section, Rectifier Action
between input and output and must be considerably smallet than the total input voltage swing. Furthermore, as the tube gain is increased by regeneration in the plateescreen grid circuit, the difference becomes less and less to the point where the output voltage is equal to the input voltage. The regeneration control resistor (R-104) is adjusted to this condition which is the optimum point for stability.
f. BALANCE.-At this point of optimum adjustment the amplifier plate-screen grid circuit is critically regenerated, and would be on the vetge of self-sustained oscillation if the degenerative connections to the control grids were disconnected or otherwise rendered inoperative. In the overall sense the amplifier is degenerative but internally consists of a regenerated section around which a degenerative circuit is connected. The amplifier may also be visualized as an amplifier having an infinite gain (secured in this case by critical regeneration) which is completely degenerated externally; thus the stability improvement envisioned in any degenerative amplifier by greater gain and more degenetation is carried to its logical endpoint.
g. EFFECT OF SCREEN GRIDS.-At the point of oritical regeneration the screen grids do the actual work of unbalancing the bridge to produce an output while the control grids exert only a transient type of control to initiate the action. For any steady value of input voltage the potential of each control grid with respect to its cathode is the same, and the potential difference between the grids is zero. This feature of zero grid voltage excursion in tesponse to an input voltage is highly desirable because it entirely removes the effect of the curved grid voltage-plate current characteristic common to all tubes, and the amplifier is strictly linear in its input to output relationship.
b. PRACTICAL CIRCUIT.-The practical amplifiet circuit is shown in figure 3-3. It is entirely similar in function to the simplified circuit of figure 3-2 but the addition of cettain components is dictated by practical circuit limitations and operating conditions.
(1) Voltage regulator tubes (V-105 and V-106, Type 991) replace the coupling batteries. The low vatiational resistance characteristic to this type of regulator tube is similat in effect to a battery.
(2) The voltage regulator tubes require a continuous keep-alive cutrent, necessitating the addition of keep-alive bleeder resistors ($\mathrm{R}-106$ and $\mathrm{R}-107,100,000$ ohms each) from each tube to the negative (-) plate supply lead.
(3) The keep-alive curtent required by the coupling tubes would be an excessive curtent drain from the amplifier tube plate circuit proper so a twin-triode tube is added as a cathode follower between the amplifier plates and the loaded coupling tube circuits. No further
amplification is contributed by this tube except for the advantages gained by removing all plate loading from the amplifier tubes proper.
(4) Because of inherent differences between tubes and other circuit components it is necessary to initially balance the bridge to zero output with zero applied input. The zero adjusting potentiometer (R-103, 10,000 ohms) serves this purpose by controlling the plate series resistance of one amplifiet tube relative to the other.
(5) A cathode resistor ($\mathrm{R}-108,51,000$ ohms) must be added between the amplifiet tube cathodes and the negative (-) plate supply lead because of the voltage drop added by the bleedet resistors.

5. SWITCH SECTION.

a. SWITCHES. - The Switch Section consists of a range switch (S-102) for selecting the desired range of input voltage, and a Selector Switch (S-103) for selecting the desired function, $\mathrm{d}-\mathrm{c}$ input of either polarity or a-c input. Reference is made to the simplified switch citcuit of figure 3-4.
(1) RANGE SWITCH.-The range switch with its connected resistors is essentially an input attenuator and changes range by accurately dividing the input voltage. In addition on a-c ranges it is necessary to correct for the contact potential of the diode rectifier in the a-c probe (Paragraph 9. a. (1)) so the contact potential of a balancing diode is applied through a second attenuator section similar to the range attenuator. The attenuation is not changed when switching from the 3 -volt to the 1.2-volt range; instead the range is changed by changing the range of the output voltmeter by the application of a shunting resistance ($\mathrm{R}-124$) across the voltmeter resistor (R-123 in the TS-375/U or R-131 and R-132 in the TS-375A/U). Thus when switching from 3 volts to the 1.2 volt tange the only connection change is reduction of the output voltmeter range by shunting. The range switch also grounds the a-c probe lead in the 300 -volt position so that the instrument will not be functional on a-c input voltages that can damage the diode rectifier.
(2) SELECTOR SWITCH.--The selector switch has three positions, D-C+, D-C-, and A-C, and primarily serves to switch the range switch between the d-c and a-c probe and to reverse the polarity of the indicating instrument. It also has several secondary functions which can best be illustrated by separate explanation.
(a) In each position the appropriate probe is connected to the range attenuator, and the unused probe is grounded to completely prevent insulation leakage or capacitive coupling interferences in the event voltages are applied to the unused probe.
(b) The polarity of the indicating instrument is reversed between the D-C+ and D.C- positions. On a-c ranges the diode rectifier in the a-c probe develops a rectified d-c voltage that is negative (-) with respect to
the ground so the indicating instrument polarity remains the same between the D-C- and A-C positions.
(c) In the A-C position the 1.2 -volt a-c range calibration adjustment rheostat ($\mathrm{R}-109$) and its series resistor ($R-125$) is connected in place of the normal 1.2-volt range-changing resistor (R-124). This makes the 1.2-volt a-c range calibration adjustment effective only in the A-C switch position.
(d) In the A-C position a 15 megohm scale correcting resistor is shunted across the lower section of the range attenuator. This resistor assists in removing a slight scale tracking error on the 12,30 and 120 volt a-c ranges where individual scale arcs are not used.
(e) In both d-c positions the balancing diode (V-107) is shorted out because the balancing contact potential is only required on a-c ranges (Paragraph 7.f.).
b. CIRCUIT ISOLATION.-The resistors comprising the input and balancing attenuators have a total resistance of many megohms and on low ranges carry a relatively low order of current. They thus are quite susceptible to stray leakage currents and some precautions must be observed in design. The panel resistor deck (E-104) which carries the attenuator resistors, and the range switch do not support any component or portion of any circuit that is appreciably above ground potential. Also the wiring between the panel resistor deck and the range switch and all associated wiring to probe receptacles, amplifier tube grids, etc., is not allowed to touch any portion of the circuit carrying appreciable voltage.
c. ATTENUATION.-The range attenuator in combination with the resistor in the probes is calculated to deliver 2.5 volts to the D-C Amplifier when full scale voltage is applied on all ranges except the 1.2 volt range. On the 1.2 volt range the amplifier input is reduced to 1.0 volt for full scale indication by the output shunt resistor (Paragraph 5 (1)). A constant resistance is presented to the probe circuits of 25 megohms by the attenuator proper.

6. D-C PROBE.

a. CONSTRUCTION.-The d-c probe comprises a test probe similar in construction to a standard-type test probe except for inclusion of an isolating resistor (R-126, five megohms), and an AN single-pin connector plug.
b. INPUT RESISTANCE.-The five-megohm isolating resistor together with the 25 -megohm range attenuator resistance presents a total input resisance of 30 megohms to the circuit in which a measurement is being made.
c. CAPACITANCE LOADING. - The isolating resistor serves to minimize capacitive loading of the meas-
ured circuit which is important if the circuit contains r-f voltages, and particularly resonant circuits which might be thrown out of alignment during the measurement.
d. STOWAGE. - When making measurements in purely d-c circuits the isolating resistor serves no useful purpose. In such cases the d-c probe may be stowed in the d-c probe compartment and the voltage for measurement applied to the panel input terminals by means of standard test leads or wire connections. When the probe is clipped into its holder in the probe compartment the ungrounded panel terminal makes connection to the probe tip through the lower probe holder clip.

7. A-C PROBE.

a. CONSTRUCTION.-The a-c probe consists of a diode rectifier tube ($\mathrm{V}-108$, type $\mathrm{CK}-606 . \mathrm{BX}$), an isolating resistor ($\mathrm{R}-127$, five megohms) and a blocking capacitor ($\mathrm{C}-110,500 \mathrm{mmf}$), cased in a cylindrical bakelite case similar in appearance to a standard test probe but larger in diameter. In addition to the conventional test probe tip prod the contact end carries a circumferential ring for making a short ground connection when measuring high-frequency a-c voltages. The general construction and the electrical circuit is shown in figure 3-5.
b. DIODE ACTION.-The diode rectifier tube is shunt-connected across the input circuit with the cathode connected to ground and the plate connected to the ungrounded input lead. It thus rectifies the a-c input by passing the positive half-cycles of a-c to ground. A few half cycles of positive conduction to ground then will build up a negative potential at the plate as described by the oscilloscope illustrations in figure 3-5. The blocking capacitor will then in a short time build up a charge above ground almost equal to the positive half-cycle peaks of the a-c wave. This d-c voltage is delivered through the isolating resistor to the instrument proper for indication. After the a-c input has been applied for several cycles the diode conducts only a sufficient portion of each positive peak to supply the small d-c current demanded by the range attenuator in the instrument.
c. PEAK ACTION.-The d-c voltage developed at the diode plate is therefore almost equal to the positive $(+)$ peaks of the input wave, and the instrument is essentially a peak, or crest, voltmeter. However the reading should be in terms of the effective a-c voltage; or the root-mean-square (rms) value, which is lower than the peak value. The instrument is therefore calibrated in terms of the rms value of a pure sine waveform, which has a peak value equal to $\sqrt{ } 2$ (1.414) times its rms value. Thus the rectified $d-c$ voleage developed at the diode plate is approximately 1.414 times the indicated
a-c voltage. Conversely the rms value of a sine wave is $1 / 1.414$ (or 0.707) imes the peak value.
d. D-C ATTENUATION.-The excess d-c voltage developed by the a-c probe is compensated for by an additional resistance ($\mathrm{R}-111$, 10 megohms in Voltmeter TS-375/U and R-133, 9 megohms and R-134 rheostat in Voltmeter TS-375A/U) in the a-c probe-attenuator lead.
e. METER CALIBRATION.-At high levels of a-c input to the probe the rectified $d-c$ output is almost directly proportional to the a-c input. On low ranges, however, the non-linear space path resistance, characteristic to all rectifiers becomes increasingly effective and calibration will not fit a uniform meter scale with sufficient accuracy. The low a-c ranges, 1.2 and 3 volts, therefore must have individually calibrated scale arcs (See figure 1-3). On the higher a-c ranges a slight mistracking still exists but is compensated satisfactorily by a scale tracking resistor ($\mathrm{R}-113$ in Voltmeter TS-375/U and R-136 in Voltmeter TS-375A/U) which affects the division of the range attenuator by a very slight amount (Paragraph 5. a. (2) (d)).
f. CONTACT POTENTIAL. - In thermionic (hot cathode) rectifiers the cathode omission alone will develop a negative (-) potential on the plate with no a-c input. This is termed the "contact potential" of the plate with respect to the cathode. In the type CK-60G-BX tube with the circuit load here used the contact potential is approximately 9 vole. The prube diode contact potential is compensated in the instrument by adding a similar diode to the grid circuit of the other amplifier tube (V-102) on a-c ranges (Paragraph 9. a. (1)).
g. FREQUENCY LIMITS.-An important feature of the a-c section is the frequency range over which it is usable. The low-frequency limit is determined by the impedance of the input blocking capacitor which becomes appreciable and causes a voltage drop and a reading error. This indicates use of a large value of blocking capacity for low-frequency accuracy. On the other hand, a physically large blocking capacitor would increase the inductance and capacitance to ground in the input circuit lowering the upper useful frequency limit. Thus a large capacitor is desirable at low frequencies and a sinall capacitor is desirable at high frequencies. This twocapacitor arrangement is realized by equipping the probe proper with a small capacitor ($\mathrm{C}-110,500 \mathrm{mmf}$) but arranging the probe stowage holder to contact the probe after the small probe capacitor so that a larger blocking capacitor ($\mathrm{C}-113, .02 \mathrm{mfd}$) can be located in the internal lead to the a-c panel terminal. Thus by using the a-c probe externally for high frequencies and the panel terminals for low frequencies a greater frequency range is obtained than would be the case with a single blocking capacitor in the probe only. The small co-axial contact ring immediately behind the probe-tip prod serves to
make this connection when the probe is stowed in its holder.
b. HIGH-FREQUENCY MEASUREMENTS. - In high-frequency measurements the ground return conneccion must be short and in close proximity to the ungrounded connection. For example, if the ground connection were made at the ground panel terminal at a frequency of 50 megacycles the entire circuit loop comprising the probe cable and the ground lead may resonate and cause readings high by as much as several hundred percent. Conversely this oppe of connection is perfectly good practice at for example 500 kc . The a-c probe is equipped with a close ground connection point in the form of a co-axial ring for use at high frequencies. This ground ring also serves as a convenient point of attachment for accessory connection hardware such as the ground clip prod.
i. FREQUENCY ERRORS.-At and near the upper frequency limit the a-c probe becomes affected by several actual or possible sources of error. These are negligible under ordinary conditions of measurement but in special cases may become appreciable and so are described.
(1) As before stated the upper frequency limit is determined primarily by the resonant frequency of the small circuit loop comprising the rectifier tube elements and leads, the leads between the rectifier tube and the tip prods including the blocking capacitor, and any external lead length. As the input frequency approaches the input circuit resonant frequency and resonant voltage buildup causes a high reading error. The upper frequency limit may be very approximately considered as 1/3 the resonant frequency because above that the resonant buildup may exceed several percent.
(2) The waveform of the input voltage may contain harmonics that are near the resonant frequency of the probe circuit, causing a high reading error by resonant buildup. The offending harmonic may be only a few percent of the fundamental but when its voltage component is magnified by resonance an appreciable error can develop. Fortunately, however, at the higher frequencies the input voltage is generally derived from resonant circuits or devices and the harmonic content is much lower than is usually the case at, for example, audio frequencies.
(3) In the diode rectifier space path the electrons have a certain mass and require a short though finite amount of time in transit from cathode to plate. The resultant lag causes some error at high frequencies known as "rransit time" error. However in this case it is negligible in comparison to the resonant error except at low values of input voltage where it shows up as a mis tracking of scale calibration.
j. OTHER CAUSES OF ERROR.-Certain other possible errors and operation considerations are independent of frequency and should be kept in mind when making measurements at any frequency.
(1) Hammonics in the input waveform can affect the value of the positive peak to which the instrument responds and so can introduce a "waveform error". Unless the ratio of positive peak to rms value is known this error cannot be evaluated. However, certain non-sinusoidal waveforms in common use have known "crest factor" ratios and correction to the reading can be applied. With distorted sine waves a useful relationship is that the error cannot exceed the sum total of the harmonic content in percent, and probably will be less than half of this maximum.
(2) Waveforms modulated at a lower frequency will have recurrent positive peaks which are greater than 1.414 times the rms value of the entire wave. A high reading "modulation error" will therefore result. The single exception is in the case of waves modulated 100% with flat topped pulses. In this case the instrument reads the rms value of the wave during the duty cycle which is generally the desired measurement anyway.
(3) With pulse modulation another error becomes apparent if the duty cycle is very short, as in the case of radar modulation. The duration of the peaks becomes so short relative to the fundamental pulsing frequency that the rectified voltage drops appreciably between pulses. This causes a low reading error that becomes larger as the duty cycle is made smaller.

8. INDICATING INSTRUMENT.

a. GENERAL.-The indicating instrument (1-101) is a microammeter having a current range of $0-100$ microamperes and an internal resistance of approximately 1000 ohms. It indicates the amplifier output voltage by responding to the current that flows through the output resistor. By placement in the current side of the output circuit rather than directly in series with the output resistor, its intemal resistance does not figure in the calibrated circuit, and need not be adjusted accurately.
b. SCALE ARCS AND ADJUSTMENT.-The scale carries three scale arcs; a 1.2 volt a-c arc, a 3 volt a-c arc, and a third arc for all d-c ranges and the remaining a-c ranges. The mechanism is equipped with a mechanical zero adjusting screw. The front face of the instrument is pictured in figure 1-3.

9. MINOR COMPONENTS.

a. SECONDARY FACTORS. - The following secondary functions are described in detail separately from the description of the six basic circuit sections bacause they serve to satisfy minor requirements not basic to the circuit operation.
(1) COMPENSATING DIODE.-The contact potential of the a-c probe diode rectifier (Paragraph 7) is compensated by a compensating diode (V-107) identical with the rectifier diode but which is not used for rectification. Compensation could be accomplished by using a fixed voltage but a zero drift factor would be introduced because the contact potential varies somewhat with the heater supply voltage. By use of a second diode connected to the other side of the amplifier, heater supply voltage changes will affect both diodes equally, minimizing zero drift. The compensating diode is switched out of the circuit on d-e ranges.
(2) COURSE ZERO ADJUSTMEN'T. - The two amplifier tubes (V-101 and V-102) are likely to be quite different in their control grid potentials required for balance of the bridge for zero indication. The zero adjusting potentiometer ($\mathrm{R}-103$) in the plate circuit can parially correct this condition but a major part of the unbalance in most cases is the difference in cathode temperature between tubes. To correct this a coarse zero adjustment (internal) is provided in the form of a differentially connected heater supply rheostat (R-110, 3 ohms) to balance the tube initially. The plate circuit potentiometer is then used as a fine zero adjustment.
(3) LOW-VOLTAGE CALIBRATION.-A specification requirement is adjustable calibration on the 1.2 volt a-c range. For this purpose a calibration adjustment rheostat ($\mathrm{R}-109,5100 \mathrm{ohms}$) and an associated fixed series resistor ($\mathrm{R}-125$) are switched into the circuit in place of the 1.2 -volt d-c range resistor ($\mathrm{R}-123$ in Volion, meter TS-375/U and R-131 and R-132 in Voltmeter TS-375A/U) in the a-c selector switch position (Paragraph 5. (2)). Calibration is adjustable for about 20% either side of the nominal center position of the calibration adjusement rheostat.
b. STRAY VOLTAGE EFFECTS.-A possible cause for erratic operation could be the appearance of stray a-c voltages at the elements of the amplifier or diode tubes. If large, such strays could rectify within the tube causing d-e error or interference potentials to appear. For this reason complete internal by-passing with suitable by-pass capacitors is necessary.
(1) LINE CAPACITORS. - Line-By-Pass Capacitors (C-108 and C-109, 519 mmf . each) are mounted directly at the line circuit receptacle to ground any high frequency line transients that may enter through the line cord.
(2) POWER-SUPPLY FILTER.- Low frequency transients that may pass by the line by-pass capacitors are by-passed in the power supply through the relatively large capacitor ($\mathrm{C}-107$, .02 mfd .) and through the filter capacitors (C-101 and C-102).
(3) A-C PROBE CABLE BY-PASSING. - When using the instrument for high-frequency a-c measurements a considerable high-frequency voltage may de-
velop on the a-c probe cable. This possible condition requires very complete by-passing of the cable where it enters the case. A special two-section capacitor (C-112) is mounted as an integral part of the probe cable receptacle (J-103) to effectively ground the instrument end of the cable at high frequencies. Each section of the capacitor is a feed-through low inducuance design to minimize coupling with other circuits within the case.
(4) D-C PROBE BY-PASSING.-The d-c prote is also by-passed, but with a standard capacitor (C-111, 510 mmf.), which is satisfactory by-passing for the amount of high frequency that might be present on the d-c probe cable.
(5) LOW FREQUENCY BY-PASSING. - The probe by-pass capacitors are too low in capacitance for effective low-frequency by-passing so an additional group of higher value capacitors are included further along in
the circuit. They include a second a-c probe by-pass capacitor ($\mathrm{C}-106$, .01 mfd .), grid by-pass capacitors on each amplifier tube (C-104 and C-105, . 01 mfd . each) and a compensating diode by-pass capacitor (C-103, . 01 mfd.).
c. CALIBRATION ADJUSTMENTS ON VOLTMETER TS-375A/U. - Two additional internal adjustmenes have been added to the TS-375A/U. R-131 is a 2,000 ohm potentiometer used for top mark adjustment of the amplifier. In addition a 2 megohm potentiometer (R-134) is used to adjust the sensitivity of all a-c ranges. These are secondary adjustments used co facilitate the overall adjustment of the a-c and d-c ranges respectively and have been included by making variable a small part of the resistors $\mathrm{R}-123$ and $\mathrm{R}-111$ respectively in the TS-375/U. These adjustments are factory set and are not to be touched except as described in Section IV paragraph 4. c.

Figure 4-1. Trouble Analysis Chart for Volfmeters TS-375/U and TS-375A/U

SECTION IV

MAINTENANCE

1. ROUTINE PERFORMANCE CHECK.

a. ZERO ADJUSTMENT. - Check the instrument thoroughly by applying d-c and a-c voltages of known values to the various ranges. Check the panel zero adjustment on each range before each calibration check. If the instmament pointer cannot be set to zero on any of the ranges, or erratic readings are noted, proceed with adjustment or repair as required. Refer to figure \$1.

CAUTION

Do not attempt to operate the instrument outside of its case near high-frequency power equipment. R-F voltages may be induced into the circuit in sufficient amount to cause erratic operation.

2. REQUIRED TEST INSTRUMENTS.

a. 1000-ohms-per-volt readings:

TS-297/U multimeter, or,
Weston 663
Simpson 443 alternates
Navy "OE"
b. 20,000-ohms-per-volt readings:
' S -352/U multimeter, or,
Navy "OE"
$\left.\begin{array}{l}\text { Simpson } 260 \\ \text { Weston } 790\end{array}\right\}$ alternates
c. Vacuum tube voltmeter:

TS.375/U, or,
$\left.\begin{array}{l}\text { RCA-165 } \\ \text { Radio City } 662\end{array}\right\}$ alternates
d. Tube Tester:

Signal Cosps Type I-177A, or,
Hickok 540 or 547 altemates

3. DETAILED INSPECTION PROCEDURE.

a. REMOVAL. - Remove the instrument from the combination ease by removing the four nuts on the underside of the case and lift the panel from the case.
b. GRID CURRENT.-Excessive amplifier cube grid current due to a gassy V-101 amplifier tube will cause zero shifting between d-c ranges. Check as follows.
(1) Warin up for at least five minutes. Short circuit the d-c input terminals.
(2) Set to the 300 -volt d -c ranges and carefully adjust the zero control R-103. Switch to the 3 -volt d-c range and note any zero shift. See figure 1-2.
(3) If the zero shift exceeds two percent of the scale, replace \mathbf{V}-101. If the zero shift does not exceed five percent the tube used as V - 101 may be used as V-102, and the tubes may be interchanged. Recheck after exchange or replacement.
c. LOOSE TUBE ELEMEN'TS.-If the internal structure in either amplifier tube is loose, motion of the elements may cause erratic shifting of zero. Check as follows.
(1) Warm up for one minute. Set to the $1.2-$ volt d-c range.
(2) Tap each amplifier tube, V-101 and V-102, several times, using a small metal object such as a \#18 drill. Note any shift of zero during the tapping operation.
(3) If the zero shift exceeds three percent of the scale range replace the corresponding tube.
d. A-C PROBE BLOCKING CAPACITOR LEAK-AGE-D-c leakage in either blocking capacitor, (C-110 or C-113), will cause error when measuring a-c in the presence of d-c voltages. Check as follows.
(1) Warm up for five minutes. Set to the 1.2 -volt a-c range. Carefully adjust ZERO ADJUST (R-103) (See figure 1-2). Switch to the 120 -volt a-c range without resetting zero.
(2) With the a-c probe stowed, apply approximately 100 volts d-c to the a-c input with the negative applied to the ungrounded terminal. After a few seconds switch to the 1.2 -volt a-c range and note the reading.
(3) If the reading exceeds 10 percent of the scale, leakage is excessive. Replace C-113 (See figure 5-6).
(4) Repeat with the a-c probe removed and the d-c applied to the probe directly. If the meter reading exceeds 10% of scale, leakage is excessive. Replace C-110 (See figure 3-5).
e. AMPLIFIER GAIN.-The d-c amplifier is designed and adjusted to have a gain of unity, that is the output voltage delivered to the indicating instrument load is equal to the input voltage from the relatively high-resistance range attenuator network. If defective or out of adjustment all ranges will be high or low in calibration by approximately the same percentage. The amplifier gain adjustment may be checked without a standard voltage source as follows.
(1) Warm up for five minutes. Set to the $\mathbf{1 . 2}$-volt d-c range and apply approximately one volt input.
(2) Insert a resistance of approximately 50,000 ohms in series with the indicating instrument. Note any change in reading.
(3) NO CHANGE indicates a perfectly adjusted amplifier. A deflection of up to 10 percent of the scale is tolerable. Upscale deflection indicates that the amplifier gain is greater than unity and calibration will be high; a downscale deflection indicates an amplifier gain less than unity and a low calibration.
(4) If the amplifier gain is outside the limits of the foregoing test, check the tubes, supply voltages and the values of resistors.
(5) The amplifier gain is set in the amplifier design by selection of a proper medium value of resistor $\mathrm{R}-104$ ($100,000 \mathrm{ohms}$). A higher value will increase the amplifier gain above unity, and vice versa. In the event that tubes within specification limits are unobtainable, this resistor may be changed to a higher or lower value as an emergency measure. In this event the resistor should be tagged to indicate replacement with the original value when tubes within specification limits are obtainable.

f. TUBE TESTING.

(1) In the event of any functional failure of undetermined cause the tube should be completely tested on a standard tube checker (See paragraph 2). The test should include checking for element short circuits. Particularly cathode-heatex shorts.
(2) The Type 991 voltage regulator tubes may be cherked directly in the instrument while operating by measuring the voltage drop across the elements with a voltmeter of $\mathbf{2 0 , 0 0 0}$ ohms-per-volt or higher sensitivity (See paragraph 2). The characteristic voltage drop should be between 55 and 70 volts.

g. VOLTAGE, CURRENT AND RESISTANCE CHECKS.

(1) Figure 5-7 lists the voltages and resistance values normally, appearing between the tube elements or other circuit points, and ground. The instrument must be turned off when checking resistance values. A voltmeter having a sensitivity of $\mathbf{2 0 , 0 0 0}$ ohms-per-volt or higher is required for d-c voltages, and 1000 ohms-pervolt or higher for a-c voltages. Refer to paragraph 2 for test instruments.
(2) Figure 5.8 lists the tube element currents normally existing in the socket contacts indicated.

4. ADJUSTMENTS (INTERNAL).

Two internal adjustments are provided; a coarse zero adjustment for centering the panel zero corrector, and a calibration adjustment for the 1.2 -volt a-c range.
a ZERO BALANCE ADJUSTMENT.
(1) Turn on and warm up for one minute. Set to the 3 -volt d -c range. Short circuit the input terminals. Set the panel zero corrector to approximately its center position.
(2) Locate the coarse zero adjuster ($\mathrm{R}-110$, see fig. ure 5-1) on the chassis. Using a screwdriver or fingernail, adjust to obtain an instrument reading within approximately 10 percent of its zero position. The indicating instrument will respond rather slowly to motion of the coarse zero adjuster and some time may be required for the adjusting procedure.
(3) Make a final zero adjustment with the panel zero adjuster.

b. 1.2-VOLT A-C RANGE CALIBRATION ADJUSTMENT.

CAUTION

This adjustment should be attempted only if an accurate standard source of one volt a-c having good waveform is available.
(1) Warm up for at least five minutes. Set to the 1.2-volt a-c range. Carefully adjust zero with the a-c input terminals short circuited. Connect the input to the one-volt standard voltage source.
(2) Locate the calibration adjuster (R-109) on the chassis (See figure 5-1). Set the adjuster until the indicating instrument indicates exactly one volt (the elongated scale division).
(3) Recheck the zero position, and repeat the adjustment if any noticeable shift has occurred.
(4) If it is necessary to replace V-107 or V-108, the spare type CKGOG diode may be used (See figure 5-1). No matching is required between tubes for V-107 and V-108. The replacement tube when used in either position may not balance the other diode in contact potential until it is operated for 5 or 6 hours. However such unbalance as may be noted when using a new tube will be within the rotational limit of R-103 (See figure 5-1).

c. AMPLIFIER AND OVERALL A-C ADJUSTMENT.

(1) The TS-375A/U has two additional internal adjustments that are not in the TS-375/U (See figure S-1A). R-131. is a 2,000 ohm rheostat with a screw driver slotted shaft that controls the amplifier gain within limits and will thus affect the top mark calibration of all d-c and a-c ranges. R-134 is a two megohm rheostat used to adjust the sensitivity of all the a-c ranges. Do not attempt to adjust these controls unless suitable laboratory standards are available to check all ranges and to follow these adjusments with the complete procedure described in paragraph (4b).

SECTION V

SUPPLEMENTARY DATA

1. SPECIAL MEASUREMENTS.

Voltmeter TS-375/U can be used to measure electrical quantities other than voltage by external connection of relatively simple accessory components. It can thus serve as an emergency measuring device whenever sprecial test cquipment normally used for this purpose is not available. The high input impedance compared with conventional d-c and a-c voltmeters allows a materially greater range and sensitivity in such special measurements than could be obtained with the same circuits using conventional voltmeters.
a. MEGOHM RESISTANCE MEASUREMENT.-A useful iesistance range of approximately 1000 ohms to 1000 megohms can be obtained by connecting a d-c source of voltage as shown in figure 5-10. This range is particularly adapted to the measurement of insulation leakage in cquipment and in components that have been affected by moisture or fungus growth.
(1) Connect to a 3-volt d-c voltage source as shown. Two dry cells and a potenciometer rheostat are suggested. The potentiometer can have any resistance between 1000 and 10,000 ohms.
(2) Set the voltmeter to the 3 -volt d-c range of a polarity in agreement with the battery. Short circuit the unknown resistor connections (Rx) and adjust the battery potentiometer to obtain a full scale reading (3 volts).
(3) Insert the unknown resistance and note the voltage reading obtained.
(4) Refer the voltage reading obtained to the curve of figure 5-9 and obtain the value of the unknown resistance. The curve is based upon the voltmeter input resistance of 30 megohms, giving a center scale resistance value of 30 megohms.
(5) If voltages higher than 3 voles must be applied to the unknown resistance, for example to promote breakdown in insulation, a higher voltage source may be used by switching the instrument to a corresponding voltage range. The only requirement is that the top mark adjustment be made with the unknown resistance connection short circuited. The readings are still taken on the 0-3 volt scale for direct reference to the curve regardless of the actual range used. The curve is still valid for all voltages because the input resistance remains a constant 30 megohms on all ranges.
b. CAPACITANCE MEASUREMENT.-The capacitance of an unknown capacitor may be measured by the connections shown in figure 5-11, using an a-c voltage source and a reference capacitor of known capacity. The method is similar to that suggested for resistance measurement except that a shunt connection is used.
(1) Select a capacitor of known value (Zs) near the estimated capacity of the unknown capacitor.
(2) Connect a 3 -volt source of alternating current to the voltmeter through the reference capacitor as shown. Any frequency within the power input frequency range of the voltmeter, 50 to $\mathbf{1 6 0 0}$ cycles, is satisfactory. A step-down transformer with a potentiometer in the primary is suggested.
(3) Set to the 3-volt a-c range. With the unknown capacitor connctations open adjust the source voltage to obtain a full scale (3 volts) reading.
(4) Connect the unknown capacitor and note the voltage reading obtained.
(5) Refer the voltage reading to the curve of figure 5-10 and obtain the ratio value.
(6) Multiply the value of the reference capacitor by the ratio to obtain the value of the unknown capacitor. For example a reference capacitor of .01 mfd . and a ratio of 0.16 indicates a value of .0016 mfd .
(7) Capacitance measuremenes by this method would be valid for any value of applied voltage as in the case of resistance measurements. However no reason generally exists for increasing the applied voltage to a capacitor for measurement purposes.
(8) Polarized electrolytic capacitors may be measured by placing a polarizing battery in serier with the capacitor during the mcasurement. The polarity of the battery with respect to the capacitor must be observed. A fresh battery of low internal resistance should be used; standard power supplies are not recommended because of their relatively large internal resistance.
(9) Reference capacitors below .01 mfd are not recommended because the voltmeter input capacitance becomes an appreciable source of error at lower values. The low practical limit of measurement thus becomes approximately .0001 mfd (100 mmf .). The upper limit is determined solely by the ability of the a-c source to deliver the necessary current, and for a small filament heating type transformer would be in the order of 1000 mfd.
c. INDUCTANCE MEASUREMENTS.-The inductance of an unknown reactor may be measured in the same manner as capacitance.
(1) Connect and proceed exactly as specified above for the measurement of capacitance, except substitute a reference inductor of known value for the reference capacitor.
(2) Inductance measurement is a particularly effective method of detecting short circuited turns in inductive devices such as transformers, motors, generators, etc. In this case the reference inductance can be a component similar to the suspected faulty component. If the suspected component is not faulty the instrument will read exactly half scale (1.5 volts), otherwise the reading will be lower indicating a lowered inductance caused by shorted turns or other failure.
(3) Reference inductors larger than 10 henries are not recommended because of voltmeter input loading errors. The high practical limit of measurement then becomes approximately 1000 henries. The lower limit is determined solely by the ability of the a-c voltage source to deliver the required current, and for the small filament heating type of transformer previously mencioned would he in the order of .001 henry (1 millihenry) using a reference inductance of .1 henry.
d. LOW A-C VOLTAGE MEASUREMENTS.-Low a-c voltages in low impedance circuits may be measured by applying a step.up transformer to the voltmeter input. The high input impedance of the volemeter allows connection to a relatively high impedance transformer secondary without serious burden to the transformer.
(1) Audio-type transformers having a secondary winding designed for driving a class A simplifier are well suited. The turns ratio of course must be known.
(2) Use the lower a-c ranges; higher ranges will place an unnecessary burden on the transformer and may cause an appreciable error. Use potentials that are within the limits of the lower a-c ranges, in order to be sure that the transformer iron is not worked at too high a level.
(3) The indicated voltage is divided by the transformer turns ratio to obtain the primary input voltage value.
(4) The impedance ratio of audio transformers is equal to the square of the tums ratio. For example a transformer having a ratio of primary to secondary impedance of 100 would have a turns ratio of 10 . A common type of transformer is the line-to-grid coupling transformer having a connection combination of 200 to 20,000 ohms impedance. This is a turns ratio of 10 which is a convenient figure for division. With this transformer a low range of 0.12 volts (120 millivolts) is obtained.
(s) The lower frequency limit of high quality audio transformers for measurement purposes is approximately 50 cycles. The upper frequency limit is a complex function of the natural resonant frequency of the secondary winding and the nature of the circuit to which the primary is connected.
e. LOW D-C CURRENT MEASUREMENTS.-The d-c input circuit normally used for measuring d-c voltages may be used for measuring low d-c currents as well. The high input sensitivity provides a current sensitivity normally impossible in conventional microammeters. One possible objection however is the rather high insertion voltage drop equaling the equivalent indicated voltage as a voltmeter.
(1) The lowest d-c voltage range, 1.2 volts, has a current sensitivity for full scale deflection of 0.04 microampere based upon the input resistance of 30 megohms. The scale is not figirred for a top mark of four but readings may be taken as 0 to 1.2 and divided by 30 to obtain the reading in microamperes.
(2) For higher current ranges a shunt resistor may be placed across the input terminals. Table 5-1 lists several suggested shunt values and the resulting current ranges.

TABLE 5-3. SUGGESTED D-C CURRENT RANGES

Range in Microamps	Shunt Value for 1.2 Volt Range
0.04	none
0.12	15 megohms
0.3	4.62 megohms
1.2	1.03 megohms
3	404,000 ohms
12	100,000 ohms
30	40,000 ohms
120	10,000 ohms
300	4,000 ohms
1200	

f. DECIBEL MEASUREMENTS. - The a-c section may be used for the measurement of decibel (db) values by converting the observed voltage reading into db . The curves of figure $5-12$ are arranged for convenient conversion.
(1) By definition the decibel is the logarithm (base 10) of the ratio of two values of power (watts) multiplied by 10 , or:

$$
\mathrm{db}=10 \times \log _{10} \frac{\mathrm{P} 1}{\mathrm{P} 2}
$$

In this sense it is conventionally used to express the gain of amplifiers, loss in attenuators, and other values that are essentially a power ratio.
(2) As power is proportional to the square of the voltage across a circuit it follows that the decibel is also
equal to the logarithm of the ratio between two voltages, multiplied by 20 , or:

$$
d b=20 \log _{10} \frac{e 1}{e 2}
$$

The voltages must necessarily be measured across the same value of impedance to maintain the relationship against the power developed by each voltage.
(3) The decibel is also used to express the absolute power in a circuit by calling 0 db a definite amount of power. In telephone sound practice 0 db is usually established at 6 milliwatts (. 006 watt).
(4) Furthermore by stating some definite impedance value for the circuit as well as the power at 0 db , voltage and db will have a definite relationship and a voltmeter may be calibrated in db. In standard telephone practice the impedance is stated as 500 ohms. (The usual telephone line impedance.) Thus a 500 -ohm telephone line at a level of 0 db would be delivering 6 milliwatts of power and would have a voltage across the line of 1.732 volts. At 10 db the power level would be 60 milliwatts and the line voltage would be 5.05 volts.
(5) Curve 1 of figure $5-12$ is the db .voltage relationship for a 500 ohm impedance circuit, with 0 db at 6 milliwatts. Curve 4 gives the variation in db for different impedance values with any constant applied voltage. To convert data derived from Curve 1 to an impedance valuc other than 500 ohms, detcrminc the db
value to be added or subtracted for the new impedance directly from Curve 4.
(6) Curve 2 of figure $5-12$ is a db-voltage ratio curve for determining the db relationship between any two values of voltage. First calculate the voltage ratio by dividing the one voltage by the other, then apply the calculated ratio to the ratio coordinate and derive the equivalent db value.
(7) Curve 3 of figure $5-12$ is the db -power ratio curve for determining the db relation between any two values of power. Determine the power ratio and apply to the curve as described for Curve 2.

2. VACUUM TUBE COMPLEMENT.

a. Table 5-2 lists the type and number of tubes used in actual operation of equipment.
TABLE 5-2. FUNCTIONAL TUBE COMPLEMENT

Type of Tube	Description	No. Ifsed	Function	Reference Symbol
6SJ7	Pentude	2	Input and balancing	V-101, V-102
6SL7	Dual Triode	1	Buffer Output	V. 103
CK606	Sub Miniature Diode	2	Probe Rectifier and balancing diode	V-107, V-108
991	Gas Filled Regulator	2	Voltage Regulator	V-105. V-106
SY3		1	Power Rectifier	V-104

TABLE 5-3. TECHNICAL OPERATING CHARACTERISTICS

D-C Voltage Ranges. 1.2, 3, 12, 30, 120 and 300 volts full scale	
A-C Voltage R	.1.2, 3, 12, 30, and 120 volts full scale
A-C Calibration. .rms of a sine wave, or 707 of the positive peak of a complex wave	
Frequency Ran	.Panel Terminals; 40 cps to 50 kc , to 10 cps with correction curve. Probe; 10 kc to 150 mc , to 300 mc with correction curve.
A.C Probe Input	5 mmf approximately
A-C Probe Resonant Frequenc	600 mc approximately
A-C Probe Input Resistan	5 megohms approximately
A-C Panel Terminal Input Capac	70 mmf approximately
D-C Probe Isolating Resistance	. 5 megohms
D-C Panel Terminal Input Capaci	.25 mmf approximately
D-C Input Resistance	30 megohms, total on all ranges
Calibration Adjustmen	. 1.2-volt a-c range only
Power Suppl	105 to 125 volts, 50 to 1600 cps a-c only
Power Consumption.	28 watts approximately. Standby (Heater): 14 watts approximately
Ambrent Temperature Range.-40 to +55 degrees $C,-40$ to +131 degrees F	
Internal Temperature Range. \qquad Operating; $25^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{F}$ approximately Standby; $20^{\circ} \mathrm{C}$ and $68^{\circ} \mathrm{F}$ approximately	

Figure 5-1. Volfmefer TS-375/U, Infernal Reor Oblique View

Figure 5-1A. Voltmeter IS-375A/U, Internal Rear Oblique View

Figure 5-2. Volimefer TS-375/U, Panel Underside

Figure 5-2A. Volimefer TS-375A/U, Panel Underside

Figure 5-3. Volfmeter TS-375/U, Chassis Underside

Figure 5-3A. Voltmeter TS-375A/U, Chassis Underside

Figure 5-4. Volfmeter IS-375/U, Component Locafions, Ponel Resisfor Deck

Figure 5-4A. Volfmeter YS-375A/U, Component Locations, Ponel Resisfor Deck

Figure 5-5. Volfmefer TS-375/U, Component Locafions, Chassis Resisfor Deck

Figure 5-5A. Volfmeter TS-375A/U, Component Locafions, Chassis Resisfor Deck

Figure 5-7. A-C Probe inpus impedance Characteristic

Figure 5-8. Voltmeters TS-375/U and IS-375A/U Volfage and Resistance Chart

Figure 5-9. Volimeters TS-375/U and TS-375A/U Tube Element Current Chart

SECTION VI

TABLE OF REPLACEABLE PARTS

1. GENERAL

a. TABIE OF RWPLACDNWN PARTS. - The primary purpose of this table is to identify replaceable electrical (and mechanical) components as to part and number, function and manufacturers for Voltmeter TS-375/U Contract NQbsa-30009 and Voltaeter TS-375AN Contract NOa (s) $-9616,12224$, and N383s-30174, 36339, 38158, 45654, and 60744. It does not constitute a complete electrical (and mechanical) breakdown but lists elec~ trical (and mechanical) parts as are reasonably subject to loss or failure. The hatchmark (\#) in column two indicates massigned Army and Navy Stock numbers.

2. ORDERING OF SPARE PARTS.

a. GENERAL.--Each Service using this list has established certain depots andservice groups for the storage and issue of spare parts to its organizations requiring them. The regulations of each Service should be stindied to deterisine the method and source for requisitioning spare parts. The information in this list, as to manufacturer's or contractor ${ }^{\text {r }}$ s name, type, model or drawing number, is not to be interpreted as autrorization to field agencies to attempt to purchase identical or comparable spare parts direct from the manufactirer or a wholesale or retail store except under eaergency conditions as covered by existing regulations of the Service concerned.
b. U. S. ARNY PERSONNEL.-This table is for information ONI,Y and is not to be used as a basis for requisitioning parts. Authorities for obtaining maintenance items are as follows: 1. For using organizations; applicable Service publications of the $00-30$ series of AAF Technical Orders.
c. For higher majntenance and supply echelons; the applicable Stamard Maintenance Iist.
d. Where no JAN or Navy standard part number is given to a component, care should be taken in replacing the component with any other part than that listed in the Table of Replaceable Parts. This special part probably has been chosen for a special quality not available in standard cowpanents, and use of a standard component may result in decreased life or lowered performance.

3. REFERENCE SYMBOLS.

a. GENERAL.-The reference symbols in coluns one of the Table of Replaceable Parts correspond to those shown on the line drawings. Each reference symbol consists of aletter followed by a three digit number. The asterisk (k) preceding the reference symbol indicates parts applicable only to Volmeter TS-375/U. The dagger (t) preceding the reference symbolindi-
cates parts applicable only to Volmeter IS-3'7.5 A/U. The double asterisk ($\ddagger+$) after the reference symbol indicates parts applicable to Voltmeter TS-375A/U supplied on Contract N383s-39174, 36339, 38158 and 45654. The double dagger () after the reference symbol indicates parts applicable to Voltmeter TS37.5A/V supplied on Contract N383s-60744 and NQa(s)11224 . The absence of a symbol preceding a reference symbol indicates that the parts are applicable to both Voltmeter TS-3'5/U and Voltmeter TS-37.5A/U. The letter indicates the gpe of apparatus or component as explained below:

Letter	Type of Apparatis
C	Capacitor
E	Hror Assembly
F	Fise
H	Washer or Gromat
I	Iight, Irdicator
M	Meter
O	Clip
R	Resistor
S	Swltch
T	Transformer
V	Tube
W	Cable Assembly or Test Lead
X	Socleat

4. COLOR CODE CHARTS FOR RESISTORS AND

 CAPACITORS.a. GWNERAL.-A standard color code is used for identification of resistance and capacitance values of carbon type resistors and mica-type condensers (See table 6-2). In the color code rumbers are represented by color bands. For example Black $=0$, Brown $=1$, Red $=2$ and so forth.
b. RESISTORS.-Three color bands are used on each resistor to identify its value. The fourth band or lack of band indicates the tolerance. The first band represents the first figure of the resistance value; the second band, the second figure; the third bond, the decimal multiplier. For example a $25,00 n$ ohm iy resistor would be marked as follows: first band-Red; second band-Green; third band Orange.
c. CONDENSERS.-The color code for condensers is basically the same as the color code for resistors. The exception being that the first three dots indicate digits instead of the first two dots as is the case with resistors. The fourth dot is the decimal miltplier. All readings are in micromicrofarads. For example, a . 00025 microfarad (250 micromicrofarads) condenser would be marked as follows: first dot-Red; second dot-Green; third dot-Black; fourth dot-Black. The fifth dot indicates the tolerance; the sixth dot indicates the characteristics.
table 6-1. LIST OF MANUFACTURERS
carnifacturer
Allen Bradley
The American hitwe. Corp.
American Phenolic Corp.
American Radio Hide. Inc.
Arrom, Kart \& Hegeman Electric Co.
Atlantic India Rubber Was. Inc.
Belden Meg. Co.
Bessman Mfg. Co.
Cenfleld Fubber Co.
Chicago Initstrial Instruwent Co.
Clarostat Mfg. Co., Inc.
conninental carbon Inc.
Conds, Ltd.
Cornell-मubilier Corp.
Detroit Cesket Co.
Drake Mfg. Co.
Erie Resistor Corp.
international Resistance Co.
The James Millen Mfg. Co.
Linoar, Inc.
Inttlefise, Inc.
kueller Electric Co.
National Casket Co.
Oak Mfg. Co.
Q. V. S. Prod. Inc. Ranio City Prod. Co., Inc.
Raytheon Mig. Co.
Resistance Prad. Co.
Simpon Electric Co.
U.S. Rubber Co.

United Transformer Co.
Valley mfg. Co.
The Vellumoid Co.
Western Pulber Co.
Western Elec. Instrument Corp.

Adilness
Milwaukee, Wisc.
New Britain, Cann.
1850 S. 54th Ave., Chicago 50, Ill.
152 Nachuesten Pkwy., S., Mt. Vermon, N.Y.
Laurel \& Peck Sts., Hartford, Coms.
1455 W. Van Bures St., Chicago 7, 111.
4645 W. Van Buren St., Chicago, Ill.
Univ. at Jefferson, St. Louls 7, Mo.
Garden \& Warren Sts., Bridgeport, Comr.
536 W. Ely St., Chicago 10, Ill.
Dover, N.H.
13900 Lorain Ave., Cleveland 11, Ohio
780 Frelingruysen Ave., Newark 5, N.J.
1000 Hamilton Blvd., South Plainffeld, N.J.
Burt Rd. \& P. M. RR., Detroit 23, Mich.
1713 W. Kubberd St., Chicago 22, Ill.
640 West 12th St., Erie, Perma.
1100 Terminal Comwerce Bldg., Mila. 8, 上a. melden, Mass.
6464 State Rd., Philladelphia, ferna.
4765 No. Ravenswood Ave., Chicago 40, Ill.
1583 E. 31st St., Cleveland 14, Ohio
124 E. 25 th St., New York 1, N.Y.
1280 North Clyboume Ave., Chicago, Ill.
45 Oogwood Rd., Orange, N.J.
152 W. 25th St., New York 1, N.Y.
90 Willow St., Waltham, Mass.
714 Race St., Harristourg, Perna.
5308 W. KInzie St., Chicago, Ill.
1230 Sixth Ave., New York 20, N.Y.
150 Varick St., New York 13, N.Y.
48 Jeffersan Ave., Waterbury 85, Com.
54 Rochdale St., Worcester, Mass.
620 E. Douglas St., Coshen 4, Ind.
614 Freltngtursen Ave., Neward 5, N.J.

COLOR CODE CHARTS FOR RESISTORS AND CAPACITORS

AMERICAN WAR STANDARD

$\begin{array}{ccc}007 & 001 \\ 6 & 00 T\end{array}$

COLOR	Isi DOT	2nd DOT	3rd DOT	4in DOT	5th OOT	$\frac{\text { 6in DOT }}{\substack{\text { Chorycter- } \\ \text { istics }}}$	
	1stoigil	2ndoligis	3rd Digir	Decimal Multiplier	Tolerance		
OLACK	0	0	0	1	$\pm 20 \%$	- A	
BROWN	1	1	1	10		8	
REO	2	2	2	100	\$ 2%	C	
ORANGE	3	3	3	1000		0	
YELLOW	4	4	4	10000		E	
GREEN	5	5	5	100000		F	
OLUE	6	6	6	1000000		G	
VIOLET	7	7	7	10,000000\|			
GRAY	0	0	8	10000000			
WHITE	9	9	9	\|000000000			
GOLO	-	-	-	0.1	2 5%		
SILVER	-	-	-	0.01	$\pm 10 \%$		

* A ORDINARY MICA BY-PASS

B- SAME AS A-LOW LOSS CASE

C- BY-PASS OR SILVER MICA CAPACITOR (2200 PARTS / MILLION/C)
D-SILVER MICA CAPACITOR (100 PARTS / MILLION / C)
E-SILVER MICA CAPACITOR (OTO +100 PARTS / MILLION / C)
F-SILVER MICA CAPACITOR (OTO- $\$ 0$ PARTS / MILLION / C)
G-SILVER MICA CAPACITOR (Ó TO-SO PARTS / MILLION /C)

RMA STANDARD
 for
 RESISTORS

METHOO. 2

COLOR	Isi BAND	2nd BAND	3rd BAND	4in BAND
	/si Digit	2nd Digis	$\begin{aligned} & \text { Docimal } \\ & \text { Mulridior } \end{aligned}$	Toleronce
BLACK	0	0	1	
BROWN	1	1	10	
RED	2	2	100	
ORANGE	3	3	1,000	
YELLOW	4	4	10,000	
GREEN	3	5	100,000	
BLUE	6	6	1,000,000	
VIOLET	7	7	10,000000	
GRAY	0	0	100,000,000	
WHITE	9	9	1,000,000,000	
GOLD	-	-	-	15\%
SILVER	ー	-	\square	\$10\%
NO COLOR	\sim	-	-	$\pm 20 \%$

| NETHOD | METHOD |
| :--- | :---: | :--- |
| 2 | | COLOR

table 6.3, table of replaceable Parts

MODEL: VOLTMETERS TS-375/U and TS375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-37S/U ond TS-375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Pagt and Description	Punction	Mfr. © Desif. of AIIS 7ype	Cont.or Gove. Dws. of Spec.No.
C-101	R16-C-11491-700	CAPACITOR, fixed: Paper dielectric; single section 2 mf plus or minus 20%; 600 vdcw; noncorrosive hermetically sealed metal can; $2^{\prime \prime} 1 g \times 2^{n} \times 11 / 8^{n}$ h; "Dykanol G^{n}; 2 leak proof riveted lug terminals, located on side; no intemal ground connections; 2 integral mtg ears $23 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$	Capacitance element of dc power supply filter	Cornell Dubilier type DYR8200G	$\begin{aligned} & \text { Weston part } \\ & \text { D-122103 } \end{aligned}$
C-101**	R16-C-11491-310	CAPACITOR, fixed: Paper dielectric; 2 mfd, $+20 \%-10, \% 600$ VDCW	Capacitance element of dc power supply filter	JAN CPS3BIEF205V	JAN C-25
C-101++	R16-C-11491-700	CAPACITOR, fixed; Paper, JAN type \#CP53-B1EF2054; 2AF $\pm 20 \%$; 600 vdcw; $2 \lg \times 2^{\prime \prime}$ wd x 1 1,/8" thk	Capacitance element of dc power supply fliter	JAN CP53BIEF2054	JAN C-25
C102	R16-C-11491-700	CAPACITOR, fixed: Same as C-101	Capacitance element of dc power supply fllter		
C-102**	R-16-C-11491-310	CAPACITOR, fixed: Same as C-101**	Capacitarce element of dc power supply fliter		
C-102++	R16-C-11491-700	CAPACITOR, fixed: Same as C-101++	Capacitance element of dc power supply filter	JAN CPSBEAFATS	JAN C-25
C-103	R16-C-10499-1	CAPACITOR, f1xed: Mica; 10,000 mmf $\pm 10 \% ; 600 \mathrm{vdcw} ; 15 / 8^{\prime \prime} \lg x$ $11 / 8^{\prime \prime} w d \times 5 / 16^{\prime \prime}$ thk	Plate filter for balancing diode	$\begin{aligned} & \text { JAN } \\ & \text { GH45A103K } \end{aligned}$	Jan C-25
$\mathrm{C}-104$	R16-C-10499-1	CAPACITOR, fixed: Same as C-103	RF filter at input of amplifler		
C-105	R16-C-10499-1	GAPACITOR, fixed: Same as C-103	Cathode by-pass for balaucing diode		
C-106	R16-C-10499-1	CAPACITOR, fixed: Same as C-103	RF filter in AC probe output to amplifier		
C-107	R16-C-11255-67-500	CAPACITOR, f1xed: Paper Dieleo tric; 1 section; 20,000 min $\pm 208 ;$ 600 vdcw; wax impregnated paper tube; 15/32" d19m $\times 15 / 8^{\prime \prime} \mathrm{ig}$; Halowax 1spregrated; wire lead terminals	Filter capacitor across R-106	Comell Dubllier type DT 6S2	Weston Part ND-24167

TABLE 6-3. TABLE OF REPLACEABLE PARTS

Reference Symbol	Arsy Stock No. Navy Stock No.	Name of Part san Description	Function	Ufr. Desis. or AlWS Type	Cont. or Govt. Des. or Spec. No.
C-107**	$\begin{aligned} & \mathrm{R} 16-\mathrm{C}-11255 \cdot 67- \\ & 600 \end{aligned}$	CAPACITOR, fixed: Paper dielectric; '20,000 suf $\pm 20 \% ; 600$ vdcw	Filter capacitor across R-106	JAN CP:29ALEP203M	JAN C~25
C-107++	\#	CAPACITOR, fixed: Paper; 20,000 mige $£ 208 ; 600 \mathrm{vdcw} ; 1-7 / 16^{\prime \prime} 1 \mathrm{~g} x$ $3 / 4^{n}$ wi $\times 5 / 16^{n}$ thl	Filter capacitor across R-106	JAN CN42A203M	JAN C-91
C-108	R16-C-10026-16	CAPACITOR, fixed: Kica; 510 mmf : 208; 500 VDCW; 51/64" lg x $15 / 32^{\prime \prime}$ wd $\times 3 / 16^{\text {n }}$ the	Line filter	$\begin{aligned} & \mathrm{JAN} \\ & \text { QOAS } 511 \mathrm{M} \end{aligned}$	JAN C-5
C-108\%	R16-C-10026-4	CAPACITOR, fixed: Mica dielectric; 510 unf $\pm 5 \%$. 500 VDCW	İne filter	JAN CA20A511J	JAN C-5
$\begin{aligned} & \mathrm{C}-109 \\ & \mathrm{C}-109 \end{aligned}$	R16-C-1\%)26-16	CAPACITOR, fixed: Same as C-108 CAPACITOR, fixed: Same as C-108a	Iine Filter İne Filter		
C-110	R16-C-10026-10-700	CAPACITOR, fixed: Mica, silver button type; 510 naf $\pm 10 \%$; 500 VDCW; temperature coefficient letter A; 0.447" diam x $1 / 10^{\prime \prime}$ thk; brass case, silver plated; case forms one terainol, coaxially located eyelet forms other terminal; outer case and eyelet are used for momting as well as electrical connections	Higin Frequency Bloctang Condensor in RF Probe	Erie Resistor Corp. Type \#370 8H Spec *600	Westan Part ND-24141
C-111	R16-C-10026-16	CAPACITOR, fixed: Same as C-108	Electrostatic filter for output of DC probe		
C-111\%*	R16-C-1002\%-4	CAPACITOR, fixed: Same as $\mathrm{C}-1080$	Electrostatic filter for output of DC probe		
C-112	R16WS-121985	CAPACITOR ASSPARIY: 2 metal plates form case and ground for the double balariced fixed nica capacitor, $500 \mathrm{mmf} \pm 20 \%$; temp coef letter A, 5 terminal tabs; $2^{\prime \prime} \lg \times 1^{\prime \prime}$ wis $\times 3,16^{\prime \prime}$ trk; four mitg hole centers form a square $0.72^{\prime \prime}$ on a side, holedian $0.120^{\prime \prime}$, one side of cond is the mig bracket	Balanced electrostatic and RF filter in output of AC probe	$\begin{aligned} & \text { Weston } \\ & \mathrm{D}-121965 \end{aligned}$	Weston part D-121485

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS.375/U and TS.375A/U
MAJOR ASSEMBLY: VOLTMETERS TS.375/U and TS.375A/U LESS ACCESSORIES

Reference Sysbol	```Aray Stock No. Navy Stock No.```	Nane of Part and Description	Function	Mfr. Desis. or AWS Iype	Cont. of Govt. Oes. or Spec. No.
C-112	$\begin{aligned} & \text { R16-RCP375-2-10- } \\ & 16 \end{aligned}$	CAPACITOR ASSOMBLY: Same as C-112	Balanced electrostatic and F_{m} filter in output of $A C$ probe	$\begin{aligned} & \text { RCP 375-2-10- } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { RCP 375-2-10- } \\ & 16 \end{aligned}$
C-113	R16-C-10532-10	CAPACITOR, fixed: Vica; 20,000 $1 \mathrm{l} / 8^{\prime \prime}$ wo x $29 / 64^{\prime \prime}$ thk	Low frequency bloclang condenser mounted internally	JAN C.む50A213J	JAN C-5
E-101	R16-L-4883-250	PROD ASSE JBI,Y, test: DC probe; assembly consists of prod t1p Weston part/dwg D-122047, handle Weston part/dwg D-12:2046, domposition IRC resistor type BTS 5.1 megohss $1 / 2$ watt Weston part/dwg ND-24112, bush1ng Weston part/dwg D-123048, $50^{\prime \prime}$ of rubber covered single conductor wire Weston part/dwg D-73036, plug socket type AN-3106-8S-1S Weston part dwg ND-24103, fermale for AN socket Weston part/Awg D-122050; shape similar to an ordinary test prod and lead with a resistor in the handle of the prod and with an AN cornector at the other end; 54" lg	Test prod and isolating resistor for DC vacuium tube voltmeter	$\begin{aligned} & \text { Weston } \\ & \text { D-122049 } \end{aligned}$	$\begin{aligned} & \text { Weston } \\ & \text { D-122049 } \end{aligned}$
E-101*	R16-P-5306-10	PROD ASSERBITY, test: DC probe assembly; consists of prod tip, bushing, handle, 50 " rubber covered single cond wire, 5.1 megaho resistor, $1 / 2$ (Allen Brad ley type EB, RCP \#1-6-87), plug socleet type aN-3106-8S-1S with ferrule for an socket (RCP \#1889) ; shape similar to ordinary test prod and lead ath resistor in handle of prod and with AN connector at other end; $54 / \mathrm{lg}$	Test prod and isolating resistor for DC vacuum tube voltmeter	RCP-375-28-43	$\begin{aligned} & \text { RCP-375-28- } \\ & 43 \end{aligned}$
E1014*		FRTD ASTDMRIY, test: DC probe; assembly cosists of prod tip Múcago Ind. Inst. Co. part per dwg. D-122047, handle Chtrago Ind. Inst. Co. part per ding.	Test prod and isolating resistor for DC vacum tube voltmeter	Chicago Ind. Inst Co. D-122049	Chicego Ind. Inst. Co. D-122049

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MAJOR ASSEMBLY: VOLTMETERS TS.375/U and TS-375A/ULESS ACCESSORIES

Reference Symbl	Argy stock No. Navy Stock No.	Name of Part and Deacription	Function	yfr. Desis. or AWS Type	Cont. or Gove. Dws. or Spec.No.
$\begin{aligned} & \text { E-101++ } \\ & \text { con't } \end{aligned}$		D-122046, R126 composition IRC resistor type BTS, 5.1 megohms 1/2 watt, bushing Chicago Ind. Inst. Co. part per dwg. D-120048, $50^{\prime \prime}$ of rubber covered single conductor wire Chicago Ind. Inst. co. part per dwg. D-73036 plug socket type Av-3106-8s-1s Chicago Ind. Inst. Co. part ND24103, ferrule for AN socket Chicago Ind. Inst. Co. part per dwg. D-122050; shape similar to an ordfnary test prod and lead with a resistor in the handle of the prodand with an AN conductor at the other end; 54 " lg .			
E-102	R16-Ir 4883-200	PROD ASSEVBRY, test: AC test probe; assembly consists of Pollowing major parts, probe tip Weston part/dwg D-122017, charging condenser 500 muf C-110 Erie Ilesistor Corp type \#370 BH spec \#co0, ferrule Weston part/dwg D-122030, diode tube Raytheon type CK606 (V-107) Weston part ND-24145, resistor IRC Type BTs 5.1 megWeston part/dwg ND-74142, polysterene insert spec for Weston part/dwg D-122026, case Weston part/dwg D-122028; 51" lg three wire rubber covered cable Weston part/dwg ND-24181, socket connector AN-3106-10SL_3S Weston part/dwg ND-24105, one cap for AN socket cormector Westcn part/dwg D-122041; probe $41 / 2^{\prime \prime} \lg \times 3 / 4^{\prime \prime}$ diam overal, cable $51^{\prime \prime} \mathrm{lg}$, AY socket connector $15 / 8 \lg \times 7 / 8^{\prime \prime}$ diam overal; AC qaasuredents from 50 to 150 megacycles with accuracy of $\pm 5 \%$, from 150 to 300 megacycles with accuracy of $\pm 12 \%$.	AC probe for rectification of RF and audio voltages	Weston D-122087	Weston part D-122087

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS.375/U and TS.37SA/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U ond TS-37SA/ULESS ACCESSORIES

Reference symsol	$\begin{aligned} & \text { Aray Stock No. } \\ & \text { Navy Stock No. } \end{aligned}$	Name of Part and Description	Function	ufr. a Desic. or Alos type	$\begin{gathered} \text { Cont.or } \\ \text { Cove. Dwe. } \end{gathered}$ or Spec.No.
E-102**	R16-P-6306-15	PRCDD ASSAMBLY, test: AC test probe; consists of prod tip, polysterene insert, 51" lg 3 wire nาגber covered cable, probe case $41 / 2^{\prime \prime} \lg \times 3 / 4^{\prime \prime}$ diam, charging capacitor (C-110 RCP \#2-11-58), dtode tabe (V-107 Raytizeon CK606 RCP $49-59)$. 5.1 megohm resistor $1 / 2$ W (Allen Bradley type EB RCP \#1-6-87), socket connector AN-3106-10SL-3S and AN socket cap (RCP \#18-90) ; shape similar to ordinary test prod and lead with components in handls of prod and with an AN connector on other end; $55^{\prime \prime} \mathrm{lg}$	AC probe for rectification of RF and audio voltages	RCP-375-28-44	$\begin{aligned} & \text { RCP-375م28- } \\ & 44 \end{aligned}$
E-102++		PROD ASSEURLY, test: AC test probe; assembly consists of the following major parts, probe tip Chicago Ind. Inst. Co. part per dwg. D-122017, D-122018, charging condenser 500 minf C-110 Erie Resistor Corp. type \#370Br spec D-122019, 4600 , ferrule Chicago Ind. Inst. Co. part/dwg. D 122030, diode tube D-120020, Raytheon type CK 605 (V-107) Chicago Ind. Inst. Co. part ND 34145, R127 composition resistor IRC type BTS 5.1 megohms 1/2 watt, polysterene insert spec for Chicago Ind. Inst. Co, part dwg D-122026, case Chicago Ind. Inst. Co. part-dwg D-122028, 51" ig three wire rubber covered cable Chicago Ind. Inst. Co. part ND-24181, socket connector AN-3106-10SL-3S Chicago Ind. Inst. Co. part ND 24105, one cap for AN socket connector Chicago Ind. Inst. Co. part-dwg. D-122041; probe $41 / 2^{\prime \prime} \quad 1 g$ x $3 / 4^{\prime \prime}$ diam. overall, cable 51" 1 g , AN socket connector $15 / 8^{\prime \prime} 18 \times 7 / 8^{\prime \prime}$ diam	AC probe for rectification of RF and aydio voltages	Chicago Ind. Inst. Co. D- 122067	Chicago Ind. Inst. Co . part D-122067

TABLE 6-3. TABLE OF REPLACEABLE PARTS

Reference Symblt	Aray Stock No. Navy Stock No.	Nage of Part and Deacription	Function	Yfr. Deasig. or AllS Iype	Cont. or Gove. Dwe. or Spec. No.
$\begin{aligned} & \mathrm{E}-102++ \\ & \cos ^{\prime} \mathrm{t} \end{aligned}$		overall. AC measurements from 10KC to 300 megacycles.			
H-101	R16-C-2155-250	WASHER, Mat: Neoprene; round $1 / 8^{n} \mathrm{ID}, 3 / 8^{n} \mathrm{OD}, 0.05^{n}$ thk	Used as gasleet to seal case to panel mounting studs against moisture	Detroit Gasket Vfg. Co. special for Weston	$\begin{aligned} & \text { Weston part } \\ & \text { D-121972 } \end{aligned}$
H-1018f	\#	WASFER, flat: Neoprene; cound, 7/G4" ID $\times 3 / 8^{\prime \prime}$ OD $\times 1 / 64^{\prime \prime}$ this	Used as gasket to seal case to panel mounting sords against molsture	Vellumoid Co. special for RCP	$\begin{aligned} & \mathrm{RCP}-375-13- \\ & 207 \end{aligned}$
H-101++	R16-G-2455-250	WASHER, flat: Neoprene; round 1/8" $1 \mathrm{D}, 3 / 8^{\prime \prime} \mathrm{OD}, 0.05^{\prime \prime}$ thk	Used as gasket to seal case to panel mounting studs against moisture	Atlantic India fubber works, Inc. special for Chicago Ind. Inst. Co.	Chicago Ind. Inst. Co, part D-121972
H-102	R16-WS-121952	WASHER, flat: Clear vinylite; round 0.144" ID, 0.36" 0 , 0.04" thk	To decrease leakage from Weston resistor to plin and resistor deck	Valley Mfg. Co. spectas for Weston	Weston Part D-121952
H-102++	R16-WS-121952	WASHER, flat: Clear vinylite; roumd $0.144^{\prime \prime}$ ID, $0.38^{\prime \prime} 0 \mathrm{D}, 0.04^{\prime \prime}$ thk	To decrease leakage from resistors to pin and resistor deck	National Casket Co. Special for RCP Valley ${ }^{4} \mathrm{~g}$. Co. special for Chicago Ind. Inst. Co.	$\begin{aligned} & \text { RCP-325-13- } \\ & 212 \end{aligned}$ Chicago Ind. Inst. Co. part D-121952
H-103	R16-G-2455	WhSHER, flat: Vellutex; round 0.136^{n} ID, $0.31^{\prime \prime}$ OD, 0.045^{n} thk	Gasbeet between rubber feet and case for water seal	Vellumold Co. Spec. for Weston	$\begin{aligned} & \text { Westan part } \\ & \text { D-121944 } \\ & \text { RCP 375.13- } \\ & 210 \end{aligned}$
H-104	1.33-6-1898	GROMNET: Pubber, black; fits $1 / 4^{n}$ hole diam $1 / 8^{n}$ hole diam. $1 / 16^{n}$ groove width, $3 / 15^{n}$ overall width, $11 / 32^{\prime \prime}$ overall diam	Protects wires passing through chassis	Amer Rad Hdw part \#1114	Westan part ND-23283
H-104**	\#	CROUNET: Rubber; fits $9 / 32^{\prime \prime}$ diam hole; $3 / 16^{\prime \prime}$ [D $\times 1 / 16^{\prime \prime}$ groove width $\times 7 / 32 \mathrm{~W}$ overall $\times 7 / 16^{n}$ 00	Protects wires passing through chassis	Atlantic India Rasber Wes Inc. \$382	$\begin{aligned} & \text { RCP-375-13- } \\ & 12 \end{aligned}$
H-104++	R33-G-1898	GROMET: Rubber, black; fits $1 / 4^{\prime \prime}$ hole; $1 / 8^{\prime \prime}$ hole diam, $1 / 16^{\prime \prime}$ groove width, $2 / 16^{n}$ overall width, 11/32" overall dtam	Protects wires passing through chassis	Anner Rad Hdwe part \#1114	Chicago Ind. Inst. Co. Part ND23283

diam width x 7/O2 $w ~ o v e r a l l \times 7 / 16^{n}$ 00
hole; $1 / 8^{\prime \prime}$ hole diam, $1 / 16^{\prime \prime}$ groove width, $2 / 16^{n}$ overall width, 11/32" overall dtam
used as gasleet to seal case to panel mounting studs against moisture

Used as gasket to seal sards agalnst molsture

Used as gasket to seal case to pariel mounting studs agenst moisture

To decrease leakage from Weston resistor to plr and resistor deck

To decrease leakage from resistors to pin and re

Gasleet between mbber feet and case for water seal

Protects wires passing through chassis
protects wires passing through chassis

Protects wires passing through chassis

Detroit Gasket Vfg. Co. special for Weston

Vellumoid Co. special for

Atlantic India furber works inc. specia Ind. Inst. Co.

Valley Mfg. Co. spectas National Casket Co. Special for Valley Mfg. Co special for Chicago lnd.

Vellumold Co. Spec. for Weston Amer Rad Hdw

Atlantic India furbber

Anser Rad Hdwe part \#1114

Chicago Ind. Inst. Co 23283

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Symbol	Aray Stock No. Navy Stock No.	Nane of Part and Doscription	Function	$\Delta f r . \& D e s i s$. or ATS Type	Cone. or Govt. Dwe. or Spec.No.
H-105	\#	GRONET: Rubber, black; fits $3 / 8^{n}$ hole; $1 / 4^{\prime \prime}$ hole diam, $1 / 16^{\prime \prime}$ groove width, $1 / 4^{\prime \prime}$ overall width, $9 / 32^{\prime \prime}$ overall diam	Protects wires passing through chassis and resistor deck	US Rubber style 6-5092	Weston part ND-21745
H-105*	\#	GROMMET: Rubber; fits $3 / 8^{\text {n }}$ diam hole; 9/32" ID $x 1^{\prime \prime} 16^{n}$ groove width $\times 1 / 4^{\prime \prime}$ W Overall $\times 9 / 16^{n}$ OD	protects wires passing through chassis and resistor deck	Atlantic India Pubber Works Inc. \#763	$\begin{aligned} & \text { RCP-375-13- } \\ & 11 \end{aligned}$
H-105++	\#	(RAMET: Rubber, black; fits $3 / 8^{n}$ hole; $1 / 4^{\prime \prime}$ hole diam, $1 / 16^{\prime \prime}$ groove wldth, $1 / 4^{n}$ overall width, $9 / 16^{n}$ overall diam	Protects wires passing through chassis and resistor deck	Atlantic India Rusber Works, Inc., part \#763	Chicago Ind. Inst. Co. part ND- 24226
H-106	\#	GRONET: Rubber, black; fits 1^{n} hole; $7 / 8^{\prime \prime}$ hole diam, $1 / 16^{n}$ groove width, $1 / 厶^{\prime \prime}$ overell width, $13 / 16^{\prime \prime}$ overall diam	Protects cable passing through AC probe compartments	Western Pub- ber Co. part 01151	$\begin{aligned} & \text { Weston part } \\ & \text { ND- } 242266 \\ & \text { RCP-375-13- } \\ & 213 \end{aligned}$
H-106+*	\#	CRONNET: Pubber, black; fits $1^{\prime \prime}$ hole; $7 / 8^{\text {n }}$ hole diam, $1 / 16^{\prime \prime}$ groove width, $1 / 4^{\prime \prime}$ overall width, $13 / 16^{n}$ overall diam.	Protects cable passing through AC probe compartments	Western Rubber Co. part 01151	Chicago Ind. Inst. Co. part ND-24226
H-107	R33-6-1906-280	GROMET: Black, rubber; fits $3 / 8^{\prime \prime}$ diam hole; $7 / 16^{\prime \prime}$ diam hole x $3 / 32^{n}$ wd groove $\times 1 / 4^{n}$ win $\times 3 / 4^{n}$ diam overall	Protects wires passing through resistor deck	Canfield Rubber Co. part 2029	Weston part ND-24113
H-107**	\#	CRONET: Rubber; fits $1 / 2^{n}$ diam hole; $3 / 8^{\prime \prime}$ ID $x \quad 1 / 16^{n}$ groove width $\times 1 / 4^{n}$ W overall $\times 5 / 8^{\prime \prime}$ OD	Protects wires passing through resistor deck	Atlantic India Rubber Works Inc. \#230	$\begin{aligned} & \text { RCP-375- } \\ & 13-60 \end{aligned}$
H-107+4	R33-G-1906-280	CROMET: Black, rubber; fits $3 / 8^{n}$ diam hole; $7 / 16^{\prime \prime}$ diam hole x $3 / 32^{n}$ wd groove $\times 1 / 4^{\text {n }}$ wid $\times 3 / 4^{n}$ diam overall	Protects wires passing through resistor deck	Canfleld Farb- ber Co. part 2029	Chicago Ind. Inst. Co. part ND-24113
H-108	\#	GROMAET: Black, rubber; fits $3 / 4^{\text {n }}$ diam hole; $9 / 16^{n}$ diam hole x $1 / 16^{n}$ wd groove $\times 1 / 4^{n}$ wd $\times 7 / 8^{n}$ diam overall	Protects cable passing through DC probe collpartment cover	Atlantic India Rubber Works Inc. part \#17:0	Weston part ND-24114 RCP-375-13- 214

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Syabol	Aray Stock No. Nevy Stock No.	Name of Part and Description	Punction	Wfr. © Desig. or AlWS Type	Cont. or Govt. Dwe, or Spec.No.
H-108++	\#	GHONET: Black, rubber; fits $3 / 4^{\prime \prime}$ diam hole; $9,16^{\prime \prime}$ diam hole x $1 / 16^{n}$ wd groove $x 1 / 4^{n}$ wd $\times 7 / 8^{n}$ diam overall	Protects cable passing through DC prabe compartoment codver	Atlantic India Fubber Works Inc part \#1730	Chicago Ind. Inst. Co. part ND-24114
$\mathrm{H}-109{ }^{\text {ch }}$	\#	GROMMET: Rubber; fits 9/16" diam hole, $7 / 16^{\prime \prime}$ ID x 1/16" groove width $\times 1 / 4^{\prime \prime}$ W overall $\times 3 / 4^{\prime \prime}$ OD	Protects wires passing through chassis	Atlantic India Rubber horks lnc. part \#1787	$\begin{aligned} & \text { RCT }{ }^{2}-375-13- \\ & 74 \end{aligned}$
I-101	$\begin{aligned} & \text { R17L-12932-119- } \\ & 115 \end{aligned}$	LICHT; Indicator: w/Lens; $1 / 2^{\prime \prime}$ diam, white jewel lens; for miniature bayonet base,T-3 1/4 bulb; open frame; nickel plated brass shell; $11 / 2^{\prime \prime} \lg x 13 / 16^{\prime \prime}$ wd x 1 1/8" thk $x 3 / 4^{\prime \prime}$ diam oversil; $0.687^{\prime \prime}$ diam mig/hole, $5 / 16^{\prime \prime}$ max thk panel; 'vertically mtd, lamp replaceable from front; threaded jewel; two solder lug terminals.one on each side of base; features shallow depth behind panel	"Off" indicator	$\begin{aligned} & \text { Ikeston } \\ & \text { D-122009 } \end{aligned}$	$\begin{aligned} & \text { Weston part } \\ & \text { D-122009 } \end{aligned}$
I-101	$\begin{aligned} & \text { R16-RCP-37.5-17- } \\ & 16 \end{aligned}$	LTGHT; indicator: Same as 1-101	"Off" indicator	$\begin{aligned} & \text { RCP- } 375-17 \\ & 16 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { RCP-37.5-17- } \\ & 16 \mathrm{~W} \end{aligned}$
I-101++		LIGHT, indicator: w/lens; 1/2" diam,white jewel lens; for miniature bayonet base, $\mathrm{T}-31 / 4$ bulb; U-shaped frame; $19 / 16^{\prime \prime} 1 g \quad x$ 1 1/8" wd;0.687" diam ntg./hole, 3/8" max thk panel; vertically mounted, lamp replaceable from front; threaded jewel; (extension bushing) ; two soider lug terminals; features shallow depth behind. panel.	"Off" indicator	Drake Mfg. Co. part spec.\#166-k	Chicago Ind. Inst. Co. part D-122009
I-102	$\begin{aligned} & \text { R17L-12932-119- } \\ & 110 \end{aligned}$	LIGHT; indicator: w/iens; $1 / 2^{n}$ diam, red jewel lens; for minia ture bayonet base, $\mathrm{T}-31 / 4$ bulb; open frame; nickel plated brass shell; $11 / 2^{\prime \prime}$ lg x $13 / 16^{\prime \prime}$ wd x $11 / 8^{\text {h }}$ thk $x 3 / 4^{\text {n }}$ diam overall;	"On" indicator	$\begin{aligned} & \text { heston } \\ & \mathrm{D}-122008 \\ & \mathrm{RCP}-37.5-17- \\ & 16 \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { ineston part } \\ & \text { D-122008 } \\ & \text { RCP-37.5-17- } \\ & \text { 16R } \end{aligned}$

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS.375/U and TS.375A/U
MAJOR ASSEMBLY: VOLTMETERS TS.375/U and TS.375A/U LESS ACCESSORIES

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS.375/U and TS.375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U ond T\&375A/U LESSACCESSORIES \%

Refersice Symbol	Aray Stock No. Nary Stock No.	Name of Part and Deacription	Furction	Wfr. Desie. or AWSType	Cont. or Gove. Dote. or Spec.No.
M-101**	$\mathrm{R} \pm 6$ - V -2900-7	METER, multi-scale: Same asM-101		Q.v.S. Meter Co. Special for RCP	$\begin{aligned} & \text { RCP-375-5- } \\ & 94 \end{aligned}$
M-101++	\#	METER, multi-scale: DC type; range 0 to 100 ua; rectangular bakelite flush mite case; $31 / 4^{n}$ diall body $x 1^{1 \prime}$ behind flange; rectangular flange 4.25" wd x 3 15/16" ${ }^{\mathrm{hI}}$ gh $\times 5 / 8^{\prime}$ deep; accuracy $\Psi 2 \pi ; D^{\text {D }}$ 'Arsorrval novement; full scale sensitivity 100 ua resistance across terminals 1,000 ohas $: \pm 15 \%$; calibrated for nonmagietic panel; 3 scale arcs, lowest one 7.5 degrees deflection 30 divisions with red figures and divisions, middle arc 86 degree deflection 30 divisions with red figures and divisions, top are 90 degrees deflection 60 divisions with black figures and divisions; self-contained; four mte. holes 0.147 diam, spaced $1.80^{\prime \prime}$ each side of vertical center line and $1.645^{\prime \prime}$ each side of horlzontal center line two stud terminals $10-32$ thd, $0.45^{\mathrm{n}} \mathrm{lg}$.	To indicate units of electrical measurements	Simpson Electric Co. special for Chicago Ind. Inst. Co.	Chicago Ind. Inst. Co. part D-322111
R-101	R16-R-187.51-780	RESISTOR, fixed: Composition; 100,000 ohms 41%; $1 / 2 \mathrm{~W}$; 1.75" le x 0.302 " $O D$ with axial clearance hole for ($0.165^{\prime \prime}$ diam rod; moisture resistant wax coating; two tab terminals $7 / 16^{\prime \prime}$ lg x $3 / 16^{\prime \prime}$ wd; high accuracy, low temperature coefficient ceramic tube type	Plate load of V-101	Weston part D-108936	$\begin{aligned} & \text { Heston part } \\ & \text { D-108936 } \end{aligned}$
R-101**	$\begin{aligned} & \text { R16-R-17347-21- } \\ & 700 \end{aligned}$	RESISTOR, fixed: Deposited metal film; 100,000 ohns, $.11 \%, 2 \mathrm{w}$; 0.05" per degree C negative; $13 / 4^{\prime \prime} \lg x 1 / 32^{\prime \prime}$ diam; insulated, moisture resistant; 2radial wire leads; axial clearance hole for \#6 screw for mtg	Plate load of V-101	Continental Carbon Inc Type X - 2	$\begin{aligned} & \mathrm{RCP}-375-1- \\ & 5-153 \end{aligned}$

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS-375/U and TS.375A/U

Reference Syabol	Aray Stock No. Navy Stock No.	Name of Part and Description	Function	Wfr, Desit. or AllStype	Cont. or Govt, Diff or Spec.No.
R-101+*	$\begin{aligned} & \text { R16-R-17347-21- } \\ & 700 \end{aligned}$	RESISTOR, fixed: Vetal film; 100,000 ohms $£ 1 \% ; 2 \mathrm{~h} ; 1.75 \mathrm{~F}$ lg $\times 9 / 32^{\prime \prime}$ OD with axial clearance hole for . 140 diam rod; moisture resistant wax conting; wire leads; protected by layer of 'vitreous enamel; stability of wirewound.	Plate load of V -101	Continental Carbon Inc. Type $\mathrm{X}-2$	Cnicago Ind. Inst. Co. part D-108936
R-102 H-102\%	$\begin{aligned} & \text { R16-R-18"51-780 } \\ & \text { R16-R-17347-21- } \\ & 700 \end{aligned}$	RESISTOR, fixed: Some as R-101 RESISTOR, fixed: Same as R-101\%	Plate load of V-102 Plate load of V -102		
R-102+*	$\begin{aligned} & \text { R16-R-17347-21- } \\ & 700 \end{aligned}$	RESISTOR, fixed: Same as $\mathrm{R}-101++$	Plate load of V-102		
R-103	R16-P-6925-77.5	RESISTOR, variable: Wire wourd 10,000 ohms 10\%; 2 h ; solder lug term; metal enclosed phenolic base $11 / 4^{\prime \prime}$ dian $\times 5 / 8^{\prime \prime} d$; round metal flatted shaft $1 / 4^{\prime \prime}$ diam $\times 7 / 8^{n} \mathrm{lg} ;$ A taper; insulated contact arm; nomal torque; brishing $3 / 8^{n}-32 \times 3 / 8^{n} 12$	Electrical zero corrector	$\begin{aligned} & \text { Weston part } \\ & \text { D-123099 } \\ & \text { Alternate JAN } \\ & \text { RAL5A1FD103AK } \end{aligned}$	Weston part D-122099 JAN R-19
R-103\%	R16-P-6925-77.5	RESISTOR, variable: Same as R-103	Electrical zero connector	Clarostat Type 43 Alternate JAN RAZOA1FD103AK	$\begin{aligned} & \text { RCP-37.5-4 } \\ & 104 \\ & \text { JAN R-19 } \end{aligned}$
R-103**	R16-P-6925-775	RESISTOR, variable: Same as R-103	Electrical zero commector	$\begin{aligned} & \text { Alt JAN } \\ & \text { RA2OA1FD103AK } \end{aligned}$	Chicago Ind Inst. Co. part D-122099 JAN R-19
R-104	R16-R-17347-10-8	RESISTOR, fixed: Corposition; 100,000 ohms $\pm 10 \%$; 1 w	Determines ratio of feedback	JAN RC30AF104K	Jay R-11
R-104**	$\begin{aligned} & \text { R16-R-17347-10- } \\ & 25 \end{aligned}$	$\begin{aligned} & \text { RESISTOR, f1xed: Composition; } \\ & 100,000 \text { ohms } \pm 10 \% ; 1 \mathrm{w} \end{aligned}$	Determines ratio of feedback	JAN RC30BF104K	JAN R-11

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Syobol	Army Stock No. Navy Stock No.	Name of Part and Deacription	Function	Mfr.\& Desi ©. or AWS Thpe	Cont. or Cove. DFs. or Spec.No.
R-105	$\begin{aligned} & \mathrm{R} 16-\mathrm{R}-17291-30- \\ & 17.5 \end{aligned}$	RESISIOR, fixed: Composition; 5100 ohms $\pm .5 \% ; 1$ w	Resistance filter	JAN RC30AF512	JAN R-11
R-105	$\begin{aligned} & \mathrm{R}-16-\mathrm{A}-17291-30- \\ & 500 \end{aligned}$	RESISTOR, fixed: Composition; 5100 ohms $+5 \% ; 1$ w	Resistance filter	$\begin{aligned} & \text { JAN } \\ & \text { RC3OBF512J } \end{aligned}$	JAN R-11
R-106	R16-R-17347-10-8	RESISIOR, f1xed: Same as R-104	Biasing network for V-101 and V-102	J AN RC30AF513J	JAN R-11
$\mathrm{R}-106$ * ${ }^{\text {\% }}$	$\begin{aligned} & \text { R16-R=17347-10- } \\ & 25 \end{aligned}$	RESISTOR, fixed: Same as R-104\%	Same as sbove		
R-106+ +	R16-R-17347-10-8	RESISTOR, fyxed: Same as R-104tm	Same as above		
R-107	R16-R-17347-10-8	RESISIOR, fixed: Same as R-104	Current ligiting resistor for V-106	$\begin{aligned} & \text { JAN } \\ & \text { RCЗOAF.513J } \end{aligned}$	JAN R-11
$\mathrm{R}-107 \%$	$\begin{aligned} & \text { R16-R-17347-10- } \\ & 25 \end{aligned}$	RESISTOR, fixed: Same as R-109\%	Same as above	$\begin{aligned} & \text { JAN } \\ & \text { RC3OAE513J } \end{aligned}$	JAN R-11
$\mathrm{R}-108$	R16-R-17337-29-3	RESISTOR, fixed: Composition; 51,000 ohas t 55%; 1 .	Part of bias network for $\mathrm{V}-101$ and $\mathrm{V}-102$	$\begin{aligned} & \text { JAN } \\ & \text { RC3OAF513y } \end{aligned}$	JAN $\mathrm{R}-11$
R-108 ${ }^{\text {\% }}$	R16-R-17337-29-3	RESISTOR, flxed: Composition; 51,000 ohms wo	Part of bias network for $\mathrm{V}-101$ and $\mathrm{V}-102$	JAN RC30BE513J	JAN R-11
R-108+4	R16-R-17337-29-3	RESISTOR, fixed: Composition; ,51,000 ohms $\pm 55^{\prime 2} ; 1$ W	Part of bias network for $\mathrm{V}-101$ and $\mathrm{V}-102$	JAN RC30AF513J	JAN R-11
R-109	\#	RESISTOR, variable: Wire wound; . 5,000 ohms $\pm 10 \%$; 2 . $h ; 3$ solder lug term; metal enclosed phenol1c base $11 / 4^{\prime \prime}$ diam $\times 5 / 8^{\prime \prime} d$; round metal slotted shaft $1 / 4^{\prime \prime}$ d1am $\times 1 / 2^{\text {II }}$ 1; A taper; insulated contact arm; high torque; bushing $3 / 8^{\prime \prime}-32 \times 3 / 8^{\text {II }} 1 g$	1.:2'voltrange calibration	Alternate JAN RA20A2SA502AK	JAN R-19
$\mathrm{R}-109$	R16-P-6917-850-P	RESISTOR, variable: Same as R-109	1.2'voltrange callbration	Clarostat-43HHT Alternate JAN RAZOA2SA502AK	$\begin{aligned} & \text { RCP-375-4- } \\ & 106 \\ & \text { JAN R-19 } \end{aligned}$
R-109++	R16-P-6917-850-P	RESISTOR, variable: Same as R-103	1.2 volt range calibration	$\begin{aligned} & \text { JAN } \\ & \text { RA20A2SA512AK } \end{aligned}$	JAN R-19

TABLE 63. TABLE OF REPLACEABLE PARTS

Reference Symbol	Aray Stock No. Navy Stack No.	Name of Part and Description	Function	yfr. \& Desig. or ATWSType	Cont, or Govt. Dwg. or Spec. No.
R-110	R16-P-6861	RESISTOR,variable: Wire wound; 3 ohas 10\%; 2 H ; 3 solder lug terim; metal enclosed phenolic base $11 / 4^{\prime \prime}$ diam $x .5 / 8^{\prime \prime} \mathrm{d}$; round metal slotted shaft $1 / 4^{n}$ diam x $1 / 2^{n} 1$; A taper; insulated contact arri; high torque; bushing $3 / 8^{n-42 \times 3 / 8^{n}} 1 \mathrm{~g}$	Coarse zero balance control in heater circuit of $v-101$ and $v-102$	Alternate JAN RA2OA2SA3POAK	J AN R-19
$\mathrm{R}-110^{* *}$	R16-P-6861	PESISTOR, variable: Same as R-110	Coarse zero balance control in heater circuit of $V-101$ and $V-102$	```Clarostat-43W- HT Alternate JAN RAZOA2SA3ROAK```	$\begin{aligned} & \text { RCP-375-4- } \\ & 107 \\ & \text { JAN R-19 } \end{aligned}$
* $\mathrm{R}-111$	R16-R-18770-610	RESISTOR, fixed: Composition; 10 meg $\pm 2 \%, 0.05 \mathrm{w} ; 1.75^{n} \lg \times 0.392^{n}$ OD with axial clearance hole for $0.165^{\prime \prime}$ diem row moisture resistant wax; twotab terminals 7/16" $\lg \times 3 / 16^{\prime \prime} \mathrm{wd}$; high accuracy, low temperature coefficient ceramic tube cype	Part of AC diode balancing network	$\begin{array}{\|l} \text { Heston } \\ \mathrm{D}-108953 \end{array}$	$\begin{aligned} & \text { Weston part } \\ & \text { D-108953 } \end{aligned}$
*R-112	R16-R-18770-920	RESISTOR, fixed: Composition;15 meg $\pm 2 \% ; 0.037 \mathrm{H} ; 1.75^{\prime \prime} \quad \mathrm{lg} x$ $0.362^{\prime \prime}$ OD with axial clearance hole for 0.165" diam rod; moisture resistant wax coating; two tab terminals $7 / 16^{n} \quad \lg \times 3 / 16^{\prime \prime} \mathrm{wd}$; high accuracy, low temperature.coefficient ceramic tabe type	Part of AC diode balancing network	$\begin{aligned} & \text { Weston } \\ & \mathrm{D}-108954 \end{aligned}$	Weston part D-108954
*R-113	R16-R-18770-920	RESISTOR, fixed: Same as R-112	Corrects AC calibration on amplifier for 1í, 30 and 120 volts		
R-114	R16-R-18756-600	RESISTOR, fixed: Composition; 250,000 onms $\pm 1 \% ; 1 / 2 \mathrm{H} ; 1.75^{n}$ lg $\times 0.302^{\prime \prime}$ OD with axial clearance hole for. $0.160^{\prime \prime}$ diam rod; moisture resistant wax coating; two tab terainals $7 / 16^{\prime \prime}$ lg x $3 / 16^{\prime \prime}$ wd; high accuracy; 10w temperature coefficient ceramic tule type	300 volt section of voltage multiplier divider	Weston D-112378	Meston part D-112378

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Syabol	Army Stock No. Navy Stock No.	Name of Part and Deecription	Function	Mfr, Desic. orAmSTpDe	Cont. or Govt. Dwe. or Spec.No.
R-114 ${ }^{\text {酗 }}$	$\begin{aligned} & \text { R-16-4-17353-3 } \\ & 5000 \end{aligned}$	ARSISTOR, flxed: Deposited metal f1lm; 1250,000 ohns, $\pm 1 \% ; 2 \mathrm{~W}$; 0.05% per degree C negative; $13 / 4^{\prime \prime} \lg x 9,32^{\prime \prime}$ diam; insulated, moisture resistant; :2 radial wire leads; axial clearance hole for $\boldsymbol{H} 6$ screw for mtg	300 volt section of voltage multiplier dicider	Continental Carbon Inc Type X-12	$\begin{aligned} & \mathrm{RCP}-37.5-1-5- \\ & 154 \end{aligned}$
R-114*+	$\begin{aligned} & \text { R16-R-17353-3- } \\ & 5000 \end{aligned}$	HASISIOR, Clued: Deposited metal film; 250,000 ohes, $\pm 1 \%, 2 \mathrm{~W}$; 0.00 per degree C negative; $13 / 4^{\text {n }}$ $\lg x 9 / 32^{\prime \prime}$ diam; insulated, wolstare resistant; 2 radial wire leads; axial clearance hole for \# $\mathbf{H} 6$ screw for atg	300 volt section of voltage multiplier divider	Continental Carbon Inc Type $X \rightarrow 2$	Cricago Ind ${ }^{\circ}$ Inst. Co. part D-112378
R-115	R16-R-187.58-300	RESISTOR, fixed: Composition; $37.5,000$ ohms $\pm 1 \% ; 1 / 2 . \% ; 1.7 .5^{n}$ $\lg x$ 0.362" OD with axial clearance hole for $0.165^{\prime \prime}$ diaw rod; moisture resistant wax coating; two tab terminals $7 / 16^{\prime \prime} \lg x$ 3/16" wd; high accuracy: low temperature coefficient ceramic tube type	120 volt section of voltage multiplier divider	$\begin{aligned} & \text { Heston } \\ & \text { D-1:22096 } \end{aligned}$	Meston part D-123096
R-115**	R16-R-17354-12-105	RESISTOR, fixed: Deposited metal film; 15,000 ohms $\pm 1 \% ; 2 \mathrm{H}$; 0.05% per degree C negative; $13 / 4^{\prime \prime} \lg \times 9 / 32^{\prime \prime}$ diam; insulated, moisture resisさant, 2 ram dial wire leads; axial clearance hole for $\$ 6$ screw for ntg	120 volt section of voltage multiplier divider	Continental Carbon Inc. Type $X-2$	$\begin{aligned} & \text { RCP-37.5-1-5 } \\ & 155 \end{aligned}$
R-115++	\#	RESISTOR, fixed: Metal film; $37.5,000$ ohms $\pm 1 \% ; 2$ W; 1.7.5" 18 x $9, / 32^{\prime \prime}$ OD with axial clearance hole for .140 dian rod; moisture resistant wax coating; wire leads; protected by layer of vitreous ensmel; stability of wire wound	120 volt section of voltage maltiplier divider	Continental Carbon Inc. Type $\mathrm{X}-2$	Chicago Ind. Inst. Co. part D-122096
R-116	R16-R-187.59-186	RESISTOR, fixed: Composition; 625,000 ohms $\pm 1 \%$ 1/2 H; 1.7.5" 18 * 0.362" OD with axial clearance hole for 0.165^{n} diam rod; misture resistant wax coating;	Part of diode balancing network for 120 volt AC range	$\begin{aligned} & \text { Weston } \\ & \text { D-122097 } \end{aligned}$	Weston part D-12209\%

TABLE 63. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS.375/U and TS.375A/U
MAJOR ASSEMBLY: VOLTMETERSTS.375/U and TS.375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. Dealg. or AWSType	Cone. or Govt. DEg. or Spec. No.
		two tab terninals $7 / 16^{n}$ lg x $3 / 16^{n}$ wd; high accuracyt, low temperature coefficient ceramic tube type			
R-116 ${ }^{\text {\% }}$	$\begin{aligned} & \text { R16-R-17362-13- } \\ & 250 \end{aligned}$	RESISTOR, fixed: Deposited metal filn; 625,000 ohis, $\pm .11$; 2 h ; 0.05 思 per degree C negative; $13 / 4^{\prime \prime} \lg \times 9 / 32^{\prime \prime}$ diam; insulated; moisture resistant; 2 radial wire leads; axial clearance hole for \# screw for mtg	Part of diode balancing network for leo volt AC range	Continental Carbon Inc. Type X-2	$\begin{aligned} & \text { RCR-37.5-1-5- } \\ & 156 \end{aligned}$
R-116+*	R-16-R-17362-13-250	RESISIOR, fixed: yetal filn; 625,000 ohms, $\pm 1 \mathrm{f} ; 2 \mathrm{~W} ; 1.75^{\mathrm{n}} \mathrm{lg}$ $x 9 / 32^{n}$ OD with axial clearance hole for . 140 diam rod; molsture resistant kax coating; wire leads; protected by layer of vitreous enamel; stability of wire wound	Part of diode balancing network for 120 volt AC range	Continental Carbon Inc. Type X Z 2	Chicago Ind. Inst. Co. part D-122097
R-117	R16-R-18763-500	RESISTOR, fixed: Composition; $1.87,5$ weg ± 1 1/2\%; $0.3 \mathrm{~W} ; 1.75^{\prime \prime} \mathrm{lg}$ $x 0.362^{\prime \prime}$ OD with axial clearance hole for $0.165^{\prime \prime}$ diam rod; moisture resistant wax coating; two tab terminals $7 / 16^{n}$ ig $\times 3 / 16^{n}$ wd; high accuracy, low temperature coefficient ceramic tube type	30 volt section of voltage multiplier divider	Weston D-122035	Weston part D-122095
R-117\%	R16-R-17390-250	RESISTOR, fixed-Deposited metal film; 1.875 meg-ohms, $\pm 1 \% ;$: W; 0.05% per degree C negative; $13 / 4^{\prime \prime} \operatorname{lgx} 9 / 32^{n}$ diam insulated, moisture resistant; 2 radial wire leads; axial clearance hole for \#6 screw mitg	30 volt section of 'voltage multiplier divider	Continental Carban Inc Type $\mathrm{X}-12$	RCP-375-1-6-88
R-117++	R16-R-17390-250	RESISTOR, fixed: Metal film; 1.87.5 nee-ohms $\pm 18 ; 2 \mathrm{~m} ; 1.75^{\mathrm{n}} \mathrm{lg}$ $x \quad 9 / 32^{\prime \prime}$ OD with axial clearance hole for . 140 diam rod; moisture resistant wax coating;	30 volt section of voltage multiplier divider.	Continental Carbon Inc Type X-2	Cilcago Ind. Inst. Co. D- 122095

TABLE 6-3. TABLE OP REPLACEABLE PARTS

Reference Symbo 1	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfs. Dosiis. or AWSIYDe	Cont. or Covt. Des. of Spec.No.
		wire leads; protected by layer of vitreous enamel; stability of wire wound.			
R-118	R16-R-18763-500	RESISTOR, fixed: Same as R-117	Part of diode oalancing network for 30 'volts AC range		
R-118 ${ }^{*}$	R16-R-17390-250	RESISTOR, fixed: Same as R-117\%*	Part of diode balancíng network for 30 volts AC range		
R-119	R16-R-18764-500	RESISTOR, fixed: Composition; $\lg \times 0.362^{n}$ OD with axial clearance hole for 0.165^{n} diam rod; moisture resistant wax coating; two tab terminals $\pi / 16^{\prime \prime} \lg x$ 3/16" wd; high accuracy!, low temperature coefficient.ceramic tabe type	12 volt section of 'voltage multiplier divider	Weston D-122094	$\begin{aligned} & \text { Weston part } \\ & \text { D-122094 } \end{aligned}$
R-119\%*	R16-R-17459-400	RESISTOR fixed: Deposited metal film; 3.75 negohms, t. $1 \mathrm{~K} ; \mathrm{i}$. h ; 0.05% per degree C negative; $13 / 4^{n} \lg \times 9 / 32^{n}$ diam; insulated, moisture resistant; 2 radial wire leads; axial clearance hole for \#6 screw for mtg	12 'volt section of 'voltage multiplier divider	Continental Carbon, Inc. Type $\mathrm{X} \sim 2$	$\begin{aligned} & \mathrm{RCP}-37.5-1- \\ & 6-89 \end{aligned}$
R-119++	R16-R-17459-400	RESISTOR,fixed: Metal film, 3.75 megohms; $\pm 1 \% ; 12 . W ; 1.75^{\prime \prime} \lg x$ $9 / 32^{\prime \prime}$ OD with axial clearance hole for .140 diam rod; moisture resistant wax coating; wire leads; protected by layer of 'vitreous enamel; stability of wire wound	12 'volt section of 'voltage multiplier divider	Continental Carbon, Inc. Type $\mathrm{x}-2$	$\begin{aligned} & \text { Chicago Ind. } \\ & \text { Inst. Co. } \\ & \text { part } \\ & \text { D-122094 } \end{aligned}$
R-120	R16-R-18764-500	RESISTOR, fixed: Same as R-119	Part of diode balancing network for $1 / 2$ volt AC range		
$\mathrm{R}-120$ \%	R16-R-17459-400	RESISTOR, fixed: Same as R-119**	Part of diode balancing network for 12 volt AC range		

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Symbol	Aray Stock No. Navy Stock No.	Name of Papt and Deacription	Punction	Y/f. a Desig. orAlistype	Cont. or Gove, Dws. or Snar Na
R-121	R16-R-18770-330	RESISTOR, fixed: Composition; $18.75 \mathrm{meg} \pm 2 \% ; 0.015 \mathrm{H}$; $1.75^{\prime \prime} \mathrm{lg}$ $x 0.302^{\circ} 0 \mathrm{D}$ with axdal clearance hole for $0.165^{\prime \prime}$ diem rod; molstare resistant wax coating; tro tab terminals $\mathbf{7 / 1 6 "} \lg \times 3 / 16^{\prime \prime}$ wd; high accuracy, low temperature coefficient ceramic tube type	1.12 and 3 volt section of voltage multiplier divider	$\begin{aligned} & \text { Weston } \\ & \mathrm{D}-122093 \end{aligned}$	Weston part D-122093
R-121 ${ }^{\text {d }}$	R16-R-17.567	RESISTOR, fixed: Deposited metal film; 18.\%. megohms, $\pm 1 \%,: 2 \mathrm{~W}$; $0,05 \%$ per degree C negative; $13 / 4^{\prime \prime} \lg \times 9 / 32^{\prime \prime}$ diam; insulated, moisture resistant; 2 radial wire leads; axial clearance hole for \#ocr for $\begin{aligned} & \text { gtg }\end{aligned}$	1.2 and 3 volt section of voltage multiplier divider	Continental Carbon, Inc. Type X—2	$\begin{aligned} & \text { RCP-37.5-1- } \\ & 6-78 \end{aligned}$
R-121++	R16-R-17567	HESISTOR, fixed; Metal f11w; 18.75 meganas $\pm 1 k ; 2 \mathrm{~W} ; 1.7 .5^{7} \mathrm{lg}$ $\times 9 / 32^{n} 0 D$ with axial clearance hole for, 140 diam rod; moistare resistant wax coating; wire leads; protected by layer of vi= treous enamel; stability of wire wound	1.2 and 3 volt section of 'voltage aul tiplier divider	Continental Carbon, Inc. Type $\overline{\mathrm{R}} \mathrm{a}$	Cricago Ind. Inst. Co. part D-1:22093
R-1/22	R16-R-18770-930	RESISTOR, fixed: Same as R-121	Part of diode balancing network for the 1.2 and 3 volt AC ranges.		
R-1220	R16-R-17.567	RESISTOR, fixed: Same as R-1210t	Part of diode balancing network for the 1.12 and 3 volt AC ranges		
* $\mathrm{R}-123$	R16-R-18701-150	RESISTOR, fixed: hire wound; :28,000 ohns $x_{2} 1 / 2 x_{i} 1 / 4 \mathrm{H}_{1}$ maximum operating temperature $55^{\circ} \mathrm{C}$, 0.55^{n} diam $\times 1 / 2^{\prime \prime} \mathrm{lg}$; moisture resistant wax; brass end flanges form extended eyelet terminals; mit by single hole through center for $1 / 10^{\prime \prime}$ diam screw; Heston type \#139 spool	Deteraines DC amplifier sensitivity	$\begin{aligned} & \text { Weston } \\ & \text { D-122121 } \end{aligned}$	Heston part D-122121

table 6-3. table of replaceable parts
MODEL: VOLTMETERS TS.375/U and TS.375A/U
MAJOR ASSEMBLY: VOLTMETERS TS.375/U and TS.375A/U LESS ACCESSORJES

Reference Syabol	Army Stock No. Navy Stock No.	Newe of Part end Description	Function	Ufr. Deaie. or AllSType	Cont. or Covt. Dus. or Spec.No.
R-124	R16-R-18691-750	RESISTOR, fixed: Wire wound; 16,670 ohins $\pm 1 / 2 \neq 1 / 4$ h, maximua operating tewperature $55^{\mathrm{a}} \mathrm{C}$, $0.55^{\prime \prime}$ diam $\times 1,12^{\prime \prime} \mathrm{lg}$; moisture resistant wax; brass end flanges form extended eyelet terminals; mt by single hole through center for $1 / 10^{n}$ diam screw; Theston type \#139 spool	Determines calibration on 3 volt AC range	$\begin{aligned} & \text { Weston } \\ & \text { D- 1221:22 } \\ & \text { JAN. } \\ & \text { RB10B16671D } \end{aligned}$	Meston part D-2:22122 JAN R-93
R-124+4	R16-R-18691-7.50	RESISTOR, fixed: wire wound; 16,670 ohms ± 124	Determines calibration on 3 volt AC range	$\begin{aligned} & \text { JAN RB 10B } \\ & 16671 D \end{aligned}$	JAN R-93
R-125	R16-R-18689-50	RESISTOR, fixed: hire wound; 14,000 ohms $\pm 1 / 2 \%$; $1 / 4 \mathrm{~h}$, maximom operating temperature $.55^{\circ} \mathrm{C}$, 0.55^{n} dian $\times 1 / 2^{n} 1 g$; moisture resistant wax; brass end flanges form extended eyelet terminals; mt by single hole through center for $1 / 10^{n}$ dias screw; Heston type \#139 spool	Determines in conjunction with R-109 sensitivity of 1.2 volt AC range	$\begin{aligned} & \text { heston } \\ & \text { D-122123 } \\ & \text { JAN } \\ & \text { RB10B14001D } \end{aligned}$	$\begin{aligned} & \text { Hestan part } \\ & \text { D-122123 } \\ & \text { JAN } \\ & \text { R-93 } \end{aligned}$
R-1:25+\%	\#	RESISTOR, fixed: wire wound 14,000 ohms $\pm 1 \%$	Determines in conjunction with R-109 sensiti'vity of 1.2 volt AC range	JAN RB10B14001F	JAN R-93
R-126	R16-R-17493	RESISTOR, fixed: Composition; 5.1 meg $+5 \% ; 1 / 2 \mathrm{~h}$; characteristic F; $13 / 32^{n} \lg \times 1 / 8^{n}$ diam (rote body diam must not be larger than $0.14^{\prime \prime}$); insulated, roisture resistant	Isolating resistor in DC probe	International Resistance Co. type BIS	heston part ND-24142
8-126	R16-R-17493-500	RESISTOR, fixed: Composition;-5.1 megohms $\pm 5 \%$; 1/2	Isolating resistor in $D C$ probe	JAN RO20日F515.J	JAN R-11
R-1:26++	R16-R-17493-500	RESISTOR,fixed: Composition; 5.1 megohms $\pm 5{ }^{f}$; $1 / 2 \mathrm{~W}$	Isolating resistor in DC probe	$\begin{aligned} & \text { JAN } \\ & \text { RC20BF543] } \end{aligned}$	JAN R-11 Chicago Ind. Itst. Co. part ND-24142
R-127	R16-R-17493	RESISTOR, fixed: Same as R-126	Isolating resistor in AC probe		

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

Reference Symbol	Aray Stock No. Navy Stock No.	Name of Part sid Deecription	Punction	yfr. Desig. or AFS Tppe	Cont. or Dovt. Def. or Spec.No.
$\mathrm{R}-12 \%$ \% $\%$	R16-R-17493-500	HESISTOR, fixed: Same as R-126*A	Isolating resistor in AC probe		
R-128	R16-R-18648-35	HESISTOR, f1xed: Wire wound; ,500 ohms \pm fig	Heater to keep molsture out when instrument is burned off	$\begin{aligned} & \text { JAN } \\ & \text { RW31G501 } \end{aligned}$	JAN R-28
R-129	R16-R-18648-35	RESISTOR, fixed: Same as R-128	Same as above		
R-130	R16-R-172SE-S5-50	RESISTOR, fixed: Composition; 10 ohims $\pm 20 \%$	Reduce brightness of " 0 N " lamp	JAN RCROAEIOOM	JAN ${ }^{\text {R }}$ - ${ }^{\text {I }}$
R-1309:	R16-R-17256-5.5-60	RESISTOR, fixed: Composition; 10 ohns; $\pm 20 \% ; 1,4$	Reduce brightness of "ON" 1amp	JAN ROPOBF1003	J AN-R-11
$+\mathrm{k}-131$	\#	RESISTOR, varlable: Hire wound 2,000 ohms $\pm 10{ }^{\circ} ; 2 \mathrm{H} ; 100^{\circ} \mathrm{C}$ max continuous oper; 3 solder lug term; metal enclosed ooIded phenolic base $11 / 8^{\prime \prime}$ d̦am $x 9 / 16^{\prime \prime} d ;$ round metal slotted shaft $1 / 4^{\text {n }}$ d 1 am $x 1 / 8^{\prime \prime} \mathrm{lg}$ from mtg s'rfface; A taper, insulated contact arm; high torque; Drining $3 / 8^{1 "}-32 \times 3 / 8^{11}$ Lg	Fine adjustment foramplifier output	Clarostat Series 43-HT	heston part ND-24547
R-131 ${ }^{\text {\% }}$	R16-P-6893-850	HESISTOR, variable:Same as R-131	Fine adjustment for axp11fier output	Clarostat 43h-HT Alternate JAN RA20A2S A2ORAK	$\begin{aligned} & \text { RCP-375-4-105 } \\ & \text { JANI R-18 } \end{aligned}$
R-131++	R16-P-8894-890	RESISTOR, variable: Wire wound; $2 \mathrm{H} ; 2000$ ohms $\pm .10 \mathrm{~g}$	Fine adjustment for anplif1ef output	$\begin{aligned} & \text { JAN FAZLOA2SA } \\ & 202 A K \end{aligned}$	JAN R 19
+R-132	\#	RESISTOR, fixed: Wire wound 23,000 ahms $\pm 1 / 2 \% ; 1 / 4 \mathrm{H}$, max operating temperatire $.55^{0} \mathrm{C}$, $0.55^{\prime \prime}$ diam x $1 / 2^{\prime \prime} 1 g ;$ moisture resistant wax; brass end flanges form extended eyelet terminals; mt by single hole through center for $1,10^{\text {h }}$ diam screw Weston type \#139 spool	Partially determines amplifier sensitivity	heston D-125889	Weston patt D-125889

TABLE 6, 1. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS375/U and TS375A/U
MAJOR ASSEMBLY: VOLTMETERS TS.375/U ANd TS.375A/U LESS ACCESSORIES

Reference Syabol	Apary Stock No. Navy Stock No.	Wage of Papt and Descpiption	Function	Mfr a Desic. or AWS Type	Cont. or Govt. Des. or Spec.ino.
R-132\#\#	R16-R-18701-143	RESISTOR, fixed: wire wound 	Partially determines amplifier sensitivity	JAN RB10823001D	JAN R-93
R-132+*	\#	RESISTOR, f1xed: Mire wound 1/2 $\mathrm{h} ; 23,000$ ohms 11%	Partially determines amplifier sensitivity	JAN RB10B23001F	JAN R-93
+ +133	\#	RESISTOR, fixed: Composition; 9 "9eg s $3 \% ; 0.05 \mathrm{~K} ; 1.75^{\prime \prime} \lg \times 0.382^{\prime \prime}$ OD with axial clearance hole for 0.163^{n} alam rodj moisture resistant wax; two tab terminals $7 / 16^{n} \lg \times 3 / 16^{n}$ wd; high accuracy, low temperature coefficient ceramic tube type	Part of AC diode balancing network	Weston D-108902	Weston part D-108962
R-133 ${ }^{\text {\% }}$ \%	R-16-R-17540-5000	RESISTOR, fixed: Deposited metal film; 9 megolms, $\pm 1 \% ; 2 h_{i} 0.05 \%$ per degree C regative; $13 / 4^{\prime \prime} \lg x$ 9/32" diam; insulated molsture resistant; 2 radial wire leads; axial clearance kole for \#6 screw for mtg	Part of AC diode balancing network	Continental Carbon, Inc. Type X. 22	$\begin{aligned} & \text { RCP-37.5-1- } \\ & 6-90 \end{aligned}$
R-133**	R-16-R-17.540-5000	RRSISIOR, fixed: Metal film, 9 megohms $\pm 1 \% ; 2 \mathrm{~h}$; $1.75^{\mathrm{n}} \mathrm{lg} x$ 9/32" OD with axial clearance hole for $\mathbf{1 4 0}$ diam rod; moisture resistant wax coating; wire leads; protected by layer of vitreous enamel; stability of wire wound	Part of AC diode balancing network	Continerital carban Inc. Type X-2	Gicago Ifd. Inst. Co. part D-10896
+R-134	\#	GESISTOR, 'variable: Composition 2 megahis, t20;; $0.25 \mathrm{H;} 100^{\circ} \mathrm{C}$ max continuous oper; 3 solder lug tern; metal enclosed molded phenolic base $11 / 8^{\prime \prime}$ diam $\times 9 / 16^{\prime \prime}$ d; roundmetal slotted shaft $1,4^{n}$ diam $\times 1,8^{\prime \prime} \mathrm{lg}$ from atg surface; A taper; insulated contact arm; h1gh torqua; bushing $3 / 8^{n}-32 x$ $3 / 8^{\prime \prime} 1 g$	Part of AC diode balancing network	Clarostat Series 37	Westan part ND-424546
R-134* ${ }^{\text {\% }}$	R16 $=$ P-5397-60	RESISTOR, 'variable: Same as R-134.	Part of AC diode balancing network	Clarostat Type 37N-HT	RCP-37.5-4-112

TABLE 6.3. TABLE OF REPLACEABLE PARTS

Reference Syabol	Aray Stock No. Navy Stock No.	Name of Part and Description	Function	yfr. a Desig. or AWS Type	Cont. or Govt. Dwb. or Spec.No.
R-134++	\#	RESISTOR, variable: Composition, 2 megohms $\pm 20 \%$, $1,3 \mathrm{~W} ; 3$ solder lug term; metal enclosed molded phenolic base $15 / 16^{\prime \prime}$ diam x $9 / 16^{\prime \prime}$ depth; round metal slotted shaft $1 / 4^{n}$ diga $x \quad 1 / 8^{n} \quad \mathrm{lg}$ from mtg surfaces; stralght taper; insulated contact arm; spilt bushing for locking shaft	Part of AC diode balancing network	International Resistance Co. Type "Q"	Ch1cago Ind. Inst Co. part ND-24546
+R-135	\#	RESISTOR, fixed: Composition; 15,000,000 ohms $\pm 10 \%$; 1,2 W	Part of AC diode balancing network	JAN RO20AE156K	JAN R-11
$\mathrm{R}-135^{*}$	R16-R-17384-500	hesisfor, fixed: Composition; 15,000,000 ohms $\div 10 \% ; 1 / 2 \mathrm{~W}$	part of AC diode balancing network	JAN RO20BF156K	JAN R-11
+R-136	\#	RESISTOR, flxed: Same as R-135	Corrects AC calibration on $1: 2,30$ and 120 'volts		
$\mathrm{R}-136$	R16-R-17384-500	RESISTOR, fixed: Sөme as R-139**	Corrects AC calibration on 12,30 and 120 colts		
S-101	R16-S-10730-50	SWITCH, toggle: SPDT; 3A, •250 volts or 6A, 125 'volts; bakelite case; $1.5 / 32^{\prime \prime} \lg \times 11 / 16$ md x 15-16" deep óverall; 3/4" lg bat handle; back comected solder terminals; mts by single clearance hole for $15 / 32^{\prime \prime}-32$ thd x $13<2^{n}$ lg bushing	To turn off 'vacuum tube voltmeter and turn on intermal heater	AHAH type 81021-FJ	Weston part D-112492
S-101 ${ }^{\text {\% }}$ \%	R17-S-25863-50	SWITCH, toggle; SPDI; $5 \mathrm{amps}, 125$ volts	To turn off vacuum tube voltmeter and turn on internal heater	$\begin{aligned} & \text { AHH-82303-B } \\ & \text { JAN ST-120 } \end{aligned}$	JAN-S-23
S-101++	R16-S-10730-50	SWITCH, toggle: STDT; 3A, 250 'volts or 6A, 125 volts; bakelite case, $15 / 32^{\prime \prime} \lg \times 11 / 16^{\prime \prime} \quad \mathrm{md} x$ 15/16" deep overall; 3/4" lg bat handle; back connected solder terminals; mts by single clearance hole for $15 / 32^{\prime \prime}-32$ thd x 13/32" 1 g bushing	To turn off vacuum tube voltmeter and turn on intermal heater	AHEH Type 81021-FJ	Chicago Ind. Inst. Co. part D-112452

table 6-3. table of replaceable parts

Reference Symbol	Aray Stock No. Navy Stock No.	Nage of Part and Deacfiption	Function	yfr. a Desic. or Alls Type	Cont. of Covt. Des. of Spec.No.
S-102	R16-S-11292-590	SWITCH, rotary: 3 pole 5 position; 2 decks; solld silver alloy; phenollc decks; $17 / 8^{\prime \prime}$ diam x 1"; solder terminals; single hole wtg bushing $3 / 8^{n}-32$ $\times 1 / 4^{n} 1 g$	Range switch	Oak Mfg. Co. speçi.el for Weston	Heston part D-122112
S-102tor	R16-S-11292-590	SwITCH, rotary: Same as S-102.	Range switch	OAB-34344-H2	RCP-375-3-91
S-102++	R16-S-11292-590	SWITCH, rotary: Same as S-102.	Renge switch	OAB-34344 H2	Chicago Ind. Inst. Co. part D-122112
S-103	$\begin{aligned} & \text { R16-S-11:279-529- } \\ & 500 \end{aligned}$	SWITCH, rotary: 4 pole 3 position; 1 deck; solld silver alloy contacts; phenolic decks; 1 7/8" diam $\times 13 / 16^{n} \mathrm{~d}$; solder terminals; single hole mig bushing $3 / 8^{n}-32 \times 1 / 4^{n} 1 \mathrm{~g}$	Selects AC'volts +DC 'volts or -DC volts	Oak--special for Heston	WE-Br 122109
S-103**	$\begin{aligned} & \text { R16-S11279-529- } \\ & 500 \end{aligned}$	SWITCH, rotary: Same as S-103	Selects AC'volts +DC volts or -DC volts	Oak-34353-H1	RCP-37.5-3-92
S-103++	$\begin{aligned} & \text { R16-S11279-529- } \\ & 500 \end{aligned}$	SWITCH, rotary: Same as S-103	Selects ACvolts $\sim D C$ volts or -DC volts	Oak-34343-H1	Chicago Ind. Inst. Co. part D-122109
T-101	R17T-7218-180	TRAVSFORMLER, power: Filament and plate type; 115 volts, 50 to 1600 cyc: 3 output windings; Sec \#1, 500 v v at 10 ma CT; 1mpr petroleum residue compound and then potted; enclosed metel case; metal ase without terainals 3.12" $\lg \times 12.62^{\prime \prime}$ wd $\times 2.75^{n}$ deep; 9 acti've and 4 momay solder terminals mtd on a line intersecting the m tg bolts and are one $1 / 2$ mtg-c; four $0.173^{n \prime}$ diam holes on $21 / 2^{n} \times 12^{n}$ mtg-c; diagram Heston dwg D-121995	Supplies power to f1laments and plates	$\begin{aligned} & \text { Keston } \\ & \mathrm{D}-121994 \end{aligned}$	$\begin{aligned} & \text { Weston } \\ & \text { part } \\ & \text { D-1:21999 } \end{aligned}$

TABLE 6.3. TABLE OF REPLACEABLE PARTS

TABle ad TABle OF REPLACEABLE PARTS

MODEL: VOLTMETERS TS-375/U and TS-375NU
MAJOR ASSEMBLY: VOLTMETERS T5-375/U and TS-375A/ULESS ACCESSORIES

Reference Syabol	Aray Stock No. Nevy Stock No.	Neme of Part end Description	Function	-fr. A Desis. or Alls Iype	Cont. or Gove. DEs. or Spec.No.
V-106	N16T-69910	TVBE, electron: Sase as v-105.	Regulates voltage to cathude on pin 3 of V-103		
V-107	N16T-66085	TUBE, electron: Diode, cathode type	RF diode in AC probe	$\begin{aligned} & \text { Raytheon } \\ & \text { CK-606-EX } \end{aligned}$	Weston part ND-24145
V-107++	N16T-66065	TUBR, electron: Diode, cathode type	RF diode in AC probe	$\begin{aligned} & \text { Raytheon } \\ & \text { CK-606-HX } \end{aligned}$	Chicago Ind.Inst. Co. part ND-24145
v-108	N16T-66065	TUEE, electron: Same as V-107	Balancing diode for V-107		
$\mathrm{x}-101$	R16S-6188-10	SOCKET, tube: 8 contact octal; retainer ring mounting; 1.172" dial chassis cutout required; round molded bakelite body $11 / 4^{7}$ diam $\times 7 / 16^{\prime \prime} h$ excluding terminals; phosphor bronze sil'ver plated contacts	Socket for V-101	Amphenol type S-8M	Weston part ND-21620 RCP-3'75-14-8
X-101++	\#	GOCKEP, aibe: 8 contact octal; retainer ring mounting; 1.172" diam chassis cutout required; round molded low loss bakelite body; $11 / 4^{\prime \prime}$ diam x $7 / 16^{n} \mathrm{~h}$ excluding terminals; phosphor bronze siliver plated contacts	Socket for V-101	Amphenol part 78-S8TS	Chicago Ind.Inst. Co. part ND-21620
$\begin{aligned} & x-102 \\ & x-102++ \end{aligned}$	R165-6188-10 $\#$	$\begin{aligned} & \text { SOCKET, tube: Same as } \mathrm{X}-101 \\ & \text { SOCKET, tube: Same as } \mathrm{X}-101++ \end{aligned}$	Socket for V-102		
X-103	R165-6188-10	SOCKET, tube: Same as $\mathrm{X}-101$	Socket for V-103		
$x-103+*$	\#	SOCKET, tube: Same as $\mathrm{X}-101_{++}$			
$\mathrm{x}-104$	R165-6188-10	SOCKET, tube: Same as $\mathrm{X}-101$	Socket for V-104		
x-104++		SOCKET, tube: Same as $\mathrm{X}-101++$			
$\mathrm{X}-105$	R17H-5974-150	SOChET, tube: 2 contact bayonet; one piece saddle mounting; two $1 / 8^{\prime \prime} \mathrm{mtg}^{\mathrm{mtg}}$ holes on $11 / 8^{\prime \prime} \mathrm{mtg}-\mathrm{c}$, $13 / 16^{\prime \prime}$ diam chassis cutout re-	Socket for V-105	J.H.Millen type 33991	$\begin{aligned} & \text { heston part } \\ & \text { ND-2417.5 } \\ & \text { RCP-37.5-14- } \\ & .53 \end{aligned}$

TABLE 6.3. TACLE Of REPLACEABLE PARTS

MODEL: VOLTMETERS TS.375/U and TS.375A/U

MAJOR ASSEMBLY: VOLTMETERS TS-375/U and.TS-375A/U LESS ACCESSORIES

Reference Symbol	Aray Stock No. Navy Stock No.	Name of Part and Deacription	Function	Mfr. Desis. or AFS Type	Cont. or Gove. Dwt. or Spec.No.
X-105++	\#	Guired round nickel plated brass;body, $25 / 32^{\prime \prime}$ diaig $x \quad 13 / 16^{\prime \prime}$ h excluding terminals; brass button contacts SOCKET, tabe: 2 contact bayonet; two; 1.40^{n} mounting holes on $11 / 8^{\pi}$ wig $/ \mathrm{c}$; round nickel platel body; 43/64" diam x:29/32" high; two color coded leads cut to correct length	Socket for V $\boldsymbol{\sim} 105$	Drake Mfg.Co. special for Chicago Ind. Inst. Co.	Chicago Ind. Inst. Co. part ND-241'\%5
X-106	R17H-59974-150	SOCKET, tube: Same as $\mathrm{X}-105$	Sacket for V-106		
X-106++	\#	SOCKET, tube: Same as X-105++			
F-101	R17F-14240	FUSE, cartridge: 1 amp, opens in 1 second at 200% load, rated continuous at 135 and 110% load; $2{ }^{2} \mathrm{e}$ 'v; one time; glass body; 2 nickel plated brass fermile terminals; $11 / 4^{\prime \prime}$ lg $\times 1 / 4^{\prime \prime}$ diam; NEC terminals	Line fuse	Little fuse Style 3AG part 312001 Bussman type 3AG	$\begin{aligned} & \text { Heston part } \\ & \text { ND-19540 } \\ & \text { RCP-37.5-31-1 } \end{aligned}$
.F-101++	\#	FUSE, Cartridge; 1 amp, carry 110\% open at 135\% in 1 hour; 250V; one time; glass body; 2nickel plated brass ferrule terminals; 1 , $/ \mathbf{4}^{\prime \prime}$ $\lg \times 1 / 4^{\prime \prime}$ diam	Line fuse	Bussman Mfg. Co. type A.G.C.-1	Chicago Ind. Inst. Co. part ND-19540
.F-102	R17F-14240	FUSE, cartridge: Same as F-101	Line fuse		
0-101	R1614S-1:22077	CLIP: Round grounding clip for $A C$ probe; nickel plated phosphor bronze; $3 / 4^{\text {" }}$ diam $x \quad 1.18^{\text {¹ }} \mathrm{lg}$ overall	Ground clip for AC probe	$\begin{aligned} & \text { Heston } \\ & \text { D-123077 } \\ & \text { RCP-37.5-50-5 } \end{aligned}$	$\begin{aligned} & \text { Weston part } \\ & \mathrm{D}-122077 \\ & \mathrm{RCP}-3 ' 75-50-5 \end{aligned}$
0-101+ +	R16WS-120077	CLIP: Same as 0-101	Ground clip for AC probe	Chicago Ind. Inst. Co. D-123077	Chicago Ind. Inst. Co. part D-122077
0-102	R17C-12190-10	CLIP, Alligator: for making temporary electrical connections; cadmium plated steel; $2^{\prime \prime} \lg x$ $1 / 4^{\prime \prime}$ wd x 3/8" hoverall; one solder lug comection; 3/8' jaw opening	Extra clip for making up a lead	Amer Rad Hdwe \#35AT Mueller \#60	$\begin{aligned} & \text { Weston part } \\ & \text { ND-22010 } \\ & \text { RCP-37.5-13- } \\ & 70 \end{aligned}$

TABLE 6.3. TABLE OF REPLACEABLE PARTS
MODEL: VOLTMETERS TS-375/U and TS.375A/U

Reterence Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	V/f, Desil. of AIIS Trpe	cont. or Govt, Dug, at Spec.Na,
0-102++	R17C-12190-10	CLIP, Alligator: Same as 0-102	Extra clip for making up a lead	Mueller Elactric Co. Series 60	Chicago Ind. Insit. Co. part ND-22010
W-101	R15C-36230	CABIE ASSEMBLY, power: Type SJ; two \#16 AWC stranded conductors; 250 working volts; 8 ft lang; one end of cable terminated with Belden \#H-715 mabber plug; other end terminated with Belden \#H-1038 motor connector	Line Cord	Belden per Weston D-66187	Weston part D-66187
W-101 * *	\#	CABLE ASSEMBLY, power: Type SJ, 7 ft incl terminations; molded rubber male plug one end, molded rubber female plug other end	Line Cord	Cord.s Ltd \#353-1	$\begin{aligned} & \text { RCP }-37 \%-28- \\ & 52 \end{aligned}$
W-101+*	\#	CABIE ASSEMBLY, power: Type SJ; two \#16 AWG stranded conduc tors; 250 warking volts; 8 ft . long; one and of cable terminated with Belden \#H-1047 rubberplug, other end terminated with Belden \#H-1289 motor connector	Line Cord	Belden Mfg, Co. per Chicago Ind.Inst. Co. D-66187 Cord Cx-337, $ు$	```Chicago Ind Inst. Co. part D~66187```
W-102	R16-6-4883-260	LEAD, test: \#20 stranded tinned copper, 40 strands of \#36; red rubber covered; 1,000 volts max; 1/32" wall rubber; 52" Ig excluding terminals; Weston test prod, bushing and sleeve parts D-66383; D-65784 and D-65781 on one end, Weston spade terminal and sleeve parts D-79652 and D79653 at other end.	To make connections from circuit wider test to binding posts	$\begin{aligned} & \text { Weston } \\ & \text { D-79650 } \end{aligned}$	heston part D_{-79650}
W-102:*	\#	LEAD, test: \#20 AHG tirned copper wire; stranded, 40 strands \#36 wire, red rubber covered, 1000 Vmax; 52" lg excl term; test prod and tip one and; \#10 spade lug other end	To make connections from circuit under test to binding posts	$\begin{aligned} & \text { RCP } \\ & \# 803 S R \end{aligned}$	RCP \# ${ }^{\text {P03SR }}$

TABLE 63. TABLE OF REPLACEABLE PARTS
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

Reference Syabol	Argy Stock No. Navy Stock Mo.	Name of Papt and Desceiption	Function	Mfr. Desig. of AWS Type	Cont. or Gove. Det. or Spec.No.
.h-102+ +	$356000 \sim 529$	LEAN, test: \#18AMG stranded tinned copper conductor, c/o 65\# 36 AhG strands covered $\mathrm{W} /$ thermoplastic, w/protective sleeve of cellulose acetate tubing; 4 ft lg o/a; tipat one end for accom. Mueller type, 60 alligator clip or equivalent and tip at other end to fit desired jack or binding post. One red rubber covered lead.	Tomake comections from circuit under test to binding posts	Cord $\mathrm{Cx}-329 / \mathrm{U}$ Assembly	'Govt. Dwg. \#SC-C-10214
n-103	R16-6-4883-270	uenn, test: \#20 stranded tinned copper; 40 strands of \#36; black rubber rovercd; 1,000 volts max; 1/32" wall rubber; $92^{4} 1 g$ exclurang terminals; Weston test prod, rashing and sleeve parts D-66383, c. ©5784 and D-67781 on one end, Heston spade terminal and sleeve parts D-7!652 andD-79653 at other end	To sake corrections from circuit under, test to binding posts	Heston D-79651	Weston part D-79651
H-103 ${ }^{\text {¢ }}$	\#	LHAD, test: \#20 AMG tinned copper W1re; stranded, 40 strands \#36 wire, black rubber covered, 1000 V ㅍax; .52" ly excl term; test prod and tip one end; \#10 spade lug other end	To make conrections from circuit under test to binding posts	$\begin{aligned} & \mathrm{RCP} \\ & 4303 \mathrm{SB} \end{aligned}$	RCP \#903SB
W-103++	3E 6000-529	LEAD, test: \#18 AWC stranded tin ned copper conductor, c/o 65 \#36 AMG strands, cơvered with thermo plastic, W/protective sleeve of cellulose acetate tubing; 4 ft . lgo/a; tipatone end for accon. Wueller type 60alligator cllp or equivalent and tip at other end to fit desired jack or binding post. One black rubber.covered lead.	To make cornections from circuit under test to binding posts	Cord Cx-529/U Assenbly	Gout.Dwg. \#SC-C-10114

Figure 7-7 Volfmeters TS-375/U and TS-375A/U, Complefe Schemafic

Figure 72 Voltmefers TS-375/U and TS-375A/U, Pracfical Wiring Diagram

Figure 7-3. Volfmefers TS-375/U and TS-375A/U, Dimensional Drawing

INDEX

INDEX—Continued

-R- Page	Figure
Resinnace chart . 5-10	5-8
Resistance measurement . 5-11	5-10
Resistors 5-4, 5-4A, 5-4B, 5-5, 5.6, 5-6A, 5-7, 6.2A	5-1, 5-1A, 5-2, 5-2A, 5-3, 5-3A
-S -	
Scales . 1-2, 1-4	1-3
Spares	
box . 1-2, 5-4	5-1
included . 1-0, 1-2	1-1
Smability . 3-1, 3-2	
Switches . 2-1, 3-2, 3-3, 3-5, 3-6, 5-4B, 5-5	3-4, 5-2, 5-2A
- T -	
Table of replaceable parts . 6-3 to 6-11	
Tests and adjustmeots	
adjusments (internal) . 4-2, 5-4, 5-4A	5-1, 5-1A
course zero adjustment. 3-8, 5-4, 5-4A	5-1, 5-1A
general . 1-3, 2-1, 2-4	1-2
grid arrent . 4-1	
maintenance . 40 to 4-2, 5-4, 5-4A	4-1, 5-1, 5-1A
operation and adjustment. 1-3, 2-1 co 2-5	1-2
Thory of operation	
basic prioniples . 1-3, 3-1	1-2
block diagram . 3-0, 3-1	3-1
circuit secrions . 3-1, 3-3, 3-4	3-4, 3-5
general description . 1-1 co 1-2, 1-3	1-2
input connections . 2-1, 2-2, 2-4	2-2, 2-3
operation and adjustmeat. 1-3, 2-1, 2-4, 2-5	1-2
simplified circuit . 3.1	3-2
speat measurements 5-1 to 5-3, 5-11 to 5-13	5-10, 5-11, 5-12
switch section . 3-3	3-4
sechnical operaring charactenisic. 5-3	
Tubes and their function. 3-1, 3-4, 3-5, 3-6, 3-7, 4-1, 4-2	
- W-	
Wave form . 2-4, 2-5, 3-4, 3-7, 3.8	3-5
Weight .. ${ }^{\text {. }}$ 1-1	
Wiring diagram	
praical . 7-3/7-4	7-2
schematic . 7-1/7-2	7-1
-Z-	
Zero adjustmear	
electrical . 1-3, 1-4, 2-1, 3-5, 3-8, 4-1	1.2
matraial .. 2-1, 4-1	1-3

Handbook

Maintenance Instructions

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (BuAer or AMC). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations, Article 1509.

LIST OF REVISED PAGES ISSUED

insert latest revised pages. destror superseded paces.
NOTE: The portion of the cext affected by the current revision is indicated by a vertical line in the outer margins of the page.

Page No.	Date of Latest Revision
*6-17	15 February 1955
*6-18	15 February 1955
*6-19	15 February 1955
*6-20.	15 February 1955
*6-21.	15 February 1955
*6-22	15 February 1955
*6-23.	15 February 1955
*6-24.	15 February 1955
*6-25.	15 February 1955
*6-26.	15 February 1955
*6-27.	15 February 1955
*6-28.	15 February 1955
*6-29.	15 February 1955
*6-30.	15 February 1955
*6-31.	15 February 1955
*6-32.	15 February 1955
*6-33.	15 February 1955
*6-34.	15 February 1955
*7-1/7-2	15 February 1955
*7-3A/7-4A	15 February 1955
*Index A-P	15 February 1955
*Index R-Z	15 February 1955

* The asterisk indicates pages revised, added or deleted by the current revision.

ADDITIONAL COPIME OF इHIS PUBLICATION MAY 時 OBTAJNED AS FOILOWS:

LIST OF ILLUSTRATIONS

Figure Title Page
1-I Voltmeter TS-375/U, Major Units 1.-0
1-2 Voltmeters TS-375/U and TS-375A/U, Front Panel 1-3
1-3 Voltmeter T'S-375/し', Indicating Instrument I-4
2-1 Front Panel Showing Controls 2-0
2-2 Front View Showing A-C and D-C Probes and Power Cable Connected for Use 2-2
2-3 Front View Showing Test Leads and Power Cable Connected for Lise 2-2
2-4 Typical Use of A-C Probe at High Frequencies 2-3
2-5 A-C Input Connection Variations with Frequency 2-4
3-1 Block Diagram 3-0
3-2 D-C Amplifier, Simplified Circuit 3-1
3-3 D.C Amplifier, Practical Circuit 3-2
3-4 Switch Section, Switching Functions 3-3
3-5 A-C Probe Section, Kectifier Action 3-4
4-I Trouble Analysis Chart for Voltmeters 'TS-375/U and T'S-375A/U 4-0
5-1 Voltmeter TS-375/U, Internal Rear Ohlígue View 5-4
5-1A Voltmeter TS-375A/C, Internal Rear Ohlique View 5-4A
5-1B Voltmeter TS-375A/Lं, Contract N383s-70996, Internal Rear Oblique View 5-4C
5-2 Voltmeter 'I'S-375/U, Panel Linderside 5-4B
5-2A Voltmeter TS-375A, L', Panel Underside 5-5
5-2B Voltmeter T'S-375A. U, Contract N383s-70996, Panel Underside $5-4 \mathrm{D}$
5-3 Voltmeter 'IS-375/U, Chassis Cnderside 5-6
5-3A Voltmeter TS-375A/U, Chassis Underside 5-6A
5-3B Voltmeter TS-375A/U, Contract N $383 \mathrm{~s}-70996$, Chassis Underside 5-6B
5-4B Voltmeter TS-375A/U, Contract N 383s-70996, Component Locations, Panel Resistor Deck 5.6C
5-5B Voltmeter TSS-375A, U, Contract N383s-70996, Component Uucations, Chassis Resistor Deck 5-6C
5-4 Voltmeter TS-375/U, Component Lucations. Panel Resistor Deck 5-7
5-4A Voltmeter TS-375A/I, Component Jocations, Panel Resistor Deck 5-7
5-5 Voltmeter TS-375/U, Component Jocations, Chassis Resistor Deck 5-7
5-5A Voltmeter TS-375A, U, Component Locations, Chassis Resistor Deck 5-7
5-6 Frequency Correction Curve 5-8
5-7 A-C Probe Input Impedance Characteristic 5-9
5-8 Voltmeters TS-375, U and TS-375A/U, Voltage and Resistance Chart 5-10
5-9 Voltmeters TS-375/U and TS-375A/U, Tube Element Current Chart 5-10
5-10 Resistance Measurement 5-11
5-11 Capacitance and Inductance Measurement 5-12
5-12 Decibel Chart 5-13
7-1 Voltmeter TS-373/U, Schematic Diagram 7-1
7-2 Voltmeter TS-375 U, Practical Wirine I jagram 7-3
7-2A Voltmeter TS-379A/U, Contract N383:-70996, Practical Wiring Diagram 7-3A
7-3 Voltmeters 'rs-375/U and 'rS-375A/L', Dimensional Drawing 7-5
LIST OF TABLES
Table litle Page
1-1 F.quipment Supplied and Accessories 1-1
2-1 Input Impedances 2-4
2-2 Specification Accuracy 2-4
2-3 Maximum lnput Overloads 2-5
5-1 Suggested D-C Current Ranges 5-2
5-2 Functional Tuhe Complement 5-3
5-3 Technical Operating Characteristics 5-3
6-1 List of Manufacturers 6-2
6-2 Color Code Charts for Resistons and Capacitors 6-2A
6-3 T'able of Replaceable Parts 6-3

UNSATISFACTORY REPORT

FOR U. S. AIR FORCE PERSONNEL

In the event of malfunctioning, unsatisfactory design or unsatisfactory installation of any of the component units of this equipment, or if the material contained in this book is considered inadequate or erroneous, an Unsatisfactory Report. AAF Form No. 54 or a report in similar form shall be submitted in accordance with the provisions of Army Air Force Regulation No. 15-54, listing:

1. Station and organization.
2. Nameplate data (type number or complete nomenclature if nameplate is not attached to the equipment).
3. Date and nature of failure.
4. Radio model and serial number.
5. Remedy used or proposed to prevent recurrence.
6. Handbook errors or inadequacies, if possible.

FOR U. S. NAVY PERSONNEL
Report of failure of any part of this equipment during its guaranteed life shall be made on Form NAVAER 4112 "Report of Unsatisfactory or Defective Material," or a report in similar form, and forwarded in accordance with the latest instructions of the Bureau of Aeronautics. Such reports of failure shall include:

1. Reporting activity.
2. Nameplate data.
3. Date placed in service.
4. Part which failed.
5. Nature and cause of failure.
6. Remedy used or proposed to prevent recurrence.

Figure 5-18. Voltmeter TS-375A/U, Contract N383s-70996, Internal Rear Oblique View

Figure 5-2B. Voltmeter TS-375A/U, Contract N383s-70996, Panel Underside

Figure 5-3A. Volfmefer TS-375A/U, Chassis Underside

Figure 5-3B. Voltmeter TS-375A/U, Contract N383s-70996, Chassis Underside

Figure 5-4B. Voltmeter TS.375A/U, Contract N383s-70996, Component Locations, Ponel Resistor Deck

Figure 5-5B. Volfmeter TS-375A/U, Confract N3B3s-70996, Component Locotions, Chassis Resistor Deck

SECTION VI table Of Replaceable parts

1. GENERAL.

a. TABLE OF REPLACEABLE PAR'TS.-The primary purpose of this table is to identify replaceable electrical (and mechanical) components as to part and number, function and manufacturers for Voltmeter TS-375/U Contract NObsr-30009 and Voltmeter TSS375A/U Contract NOa(s)-9616 and 12224 and N383s$30174,36339,38158,45654,607+4$ and 70996 . It does not constitute a complete electrical (and mechanical) breakdown but lists electrical (and mechanical) parts as are reasonably subject to loss or failure. The hatchmark (\#) in column two indicates unassigned Army and Navy Stock numbers.

2. ORDERING OF SPARE PARTS.

a. GENERAL.-Each Service using this list has established certain depots and service groups for the storage and issue of spare parts to its organizations requiring them. The regulations of each Service should be studied to deternine the method and source for requisitioning spare parts. The information in this list, as to manufacturer's or contractor's name, type, model or drawing number, is not to be interpreted as authorization to field agencies to attempt to purchase identical or comparable spare parts direct from the manutacturer or a wholesale or retail store except under emergency conditions as covered by existing regulations of the Service concerned.
b. U. S. ARMY PERSONNEL.-This table is for information ONLY and is not to be used as a basis for requisitioning parts. Authorities for obtaining maintenance items are as follows: I. For using organizations; applicable Service publications of the $00-30$ series of AAF Technical Orders.
c. For higher maintenance and supply echelons; the applicable Standard Maintenance List.
d. Where no JAN or Navy standard part number is given to a component, care should be taken in replacing the component with any other part than that listed in the Trable of Replaceable Parts. This special part probably has been chosen for a special quality not available in standard components, and use of a standard component may result in decreased life or lowered performance.

3. REFERENCE SYMBOLS.

a. GENERAL.-The reference symbols in column one of the Table of Replaceable Parts correspond to those shown on the line drawings. Each reference symbol consists of a letter followed by a three digit number. The asterisk (*) preceding the reference symbol indicates parts applicable only to Voltmeter TS-375/U. The dageer (\dagger) preceding the reference symbol indicates parts applicable orly to Voltmeter TS-375A/U. The double asterisk (**) after the reference symbol indicates parts applicable to Voltmeter TS-375A/U supplied on Contract N383s30174, 36339, 38158 and 45654 . The double dagger $(\dagger \dagger)$ after the reference symbol indicates parts applicable
only to Voltmeter TS-375A/U supplied on Contract $\mathfrak{N} 383 \mathrm{~s}-6074+$ and $\mathrm{NO}(\mathrm{s})-1222+$. The at onc ((α) after the reference symbol indicates parts applicable only to Voltmeter TS-375A/U supplied on Contract N383s 70996. The absence of a symbol preceding a reference symbol indicates that the parts arc applicable to both Voltmeter TSS-375/U and Voltmeter TS-375A/U. The letter portion of the reference symbol indicates the particular type of electrical or mechanical part to which the iymbol is assigned, as explained below:

Leffer	Cype of Apparatus
C	Capacitors of all types
E	Miscellaneous electrical parts: prod assemblies
insulators, knobs, etc.	
F	Fuses
H	Hardware: screws, bolts, studs, washers, grom-
mets, etc.	
I	Indicating devices (except meters), indicator
M lamps, etc.	
O	Meters
R	Mechanical parts
S	Resistors: fixed and variable
T	Tritches
V	Vansformers
W	Wires, cables and cable assemblies
X	Sockets

4. COLOR CODE CHARTS FOR RESISTORS AND CAPACITORS.
a. GENERAL.-A standard color code is used for identification of resistance and capacitance values of carbon-type resistors and mica-type capacitors (See table $6-2$). In the color code numbers are represented by colored bands. For example Black $=0$, Brown $=1$, Red $=2$ and so forth.
b. RESISTORS.-Three color bands are used on each resistor to identify its value. The fourth band or lack of band indicates the tolerance. The first band represents the first figure of the resistance value; the second band, the second figure; the third band, the decimal multiplier. For example a 25,000 ohm resistor would be marked as follows: first band-Red; second bandGreen; third band-Orange.
c. CAPACITORS.-The color code for capacitors is basically the same as the color code for resistors. The exception being that the first three dots indicate digits instead of the first two dots as is the case with resistors. The fourth dot is the decimal multiplier. All readings are in micromicrofarads. For example, a $.000 \geqslant 5$ microfarad (250 micromicrofarads) capacitor would he marked as follows: first dot-Red; second dot-Green; third dot-Black; fourth dot-Black. The fifth dot indicates the tolerance; the sixth dot indicates the characteristics.

table 6-1. LIST OF MANUFACTURERS

Manufacturer	Address
Allen Bradley Co.	. Milwaukee, Wisc.
The American Hdwe Corp	. New Britain, Conn.
American Phenolic Corp	1850 S. 54th Ave., Chicago 50, Ill.
American Radio Hdwe Inc	. 152 MacQuesten Pkwy., S., Mt. Vernon, N. Y.
Arrow, Hart \& Hegeman Electric Co.	Laurel \& Peck Sts., Hartford, Conn.
Atlantic India Rubber Wks. Inc	. 1455 W. Van Buren St., Chicago 7, Ill.
Belden Mfg. Co	. 4645 W. Van Buren St., Chicago, Ill.
Burlington Instrument Co	. Burlington, Iowa
Bus.sman Mfg. Co	. Univ. at Jefferson, St. Louis 7, Mo.
Canfield Rubber Co	Garden \& Warren Sts., Bridgeport, Conn.
Chicago Industrial Instrument Co.	. 536 W. Elm St., Chicago 10, Ill.
Clarostat Mfg. Co., Inc.	Dover, N. H.
Continental Carbon Inc.	. 13900 Lorain Ave., Cleveland 1I, Ohio
Cords, Ltd	. 780 Frelinghuysen Ave., Newark 5, N. J.
Cornell-Dubilier Corp.	. 1000 Hamilton Blvd., South Plainfield, N. J.
Detroit Gasket Co.	Burt Rd. \& P. M. RR., Detroit 23, Mich.
Dial Light Co. of America, Inc	. New York, N.Y.
Drake Mfg. Co.	. 1713 W. Hubbard St., Chicago 22, Ill.
Erie Resistor Corp.	640 West 12th St., Erie, Penna.
Industrial Transformer Corp	Gouldsboro, Pa.
International Resistance Co.	1100 Terminal Commerce Bldg., Phila. 8, Pa.
The James Millen Mfy. Co	Malden, Mass.
Jetronic Industries, Inc	Philadelphia 27, Pa.
Linear, Inc	6464 State Rd., Philadelphia, Penna.
Littelfuse, Inc.	4765 No. Ravenswod Ave., Chicago 40, Ill.
Mueller Electric Co	. 1583 E. 31st St., Cleveland 14, Ohio
National Gasket Co	124 E. 25th St., New York 1, N. Y.
Oak Mfg. Co	1260 North Clybourne Ave., Chicago, Ill.
Pierce-Roberts Rubber Co	Trenton, N. J.
Q.V.S. Prod. Inc	45 Dogwood Rd., Orange, N. J.
Radio City Prod. Co., Inc	152 W. 25th St., New York 1, N. Y.
Raytheon Mfg. Co.	90 Willow St., Waltham, Mass.
Resistance Prod. Co.	714 Race St., Harrisburg, Penna.
Simpson Electric Co.	5208 W. Kinzie St.. Chicago, Ill.
U. S. Rubber Co	1230 Sixth Ave., New York 20, N.Y.
United Transformer Co.	150 Varick St., New York 13, N. Y.
Valley Mfg. Co	48 Jefferson Ave., Waterbury 85, Conn.
The Vellumoid Co	54 Rochdale St., Worcester, Mass.
Western Rubber Co	620 E. Douglas St., Goshen 4, Ind.
Western Elec. Instrument Corp.	614 Frelinghuysen Ave., Newark 5, N. J.
Zierick Mfg. Corp	New Rochelle, N. Y.

MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or Jan Type	Cont. or Govt. Dwg. or Spec. No.
C-112**	R16-RCP375-2-10-16	CAPACITOR ASSEMBLY: Same as C-112	Balanced electrostatic and RF filter in output of AC probe	RCP 375-2-10-16	$\begin{aligned} & \text { RCP 375-2-10- } \\ & 16 \end{aligned}$
C-112 ©	R16-JACZ-A279	CAPACITOR ASSEMBLY: Double balanced fixed mica delectric capacitor, $500 \mathrm{mmf} \pm 20 \%$, 5 teralnal tabs; consists of support plate (Jetronic part/dwg A-277), and plate (Jetronic part/dwg A-276-1), 4 mica plates $0.002^{\prime \prime}$ thk (Jetronic part/dwg A-276-2), 3 silver plated copper plates with tabs (Jetronic part/dwg A-278); support plate mounts assembly on rear of J-103	Balanced electrostatic and RF filter in output of AC probe	$\begin{aligned} & \text { Jetronic } \\ & \text { A-279 } \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { A-279 } \end{aligned}$
C-113	R16-C-10532-10	CAPACITOR, fixed: Mica; 20,000 mimf $\pm 108 ; 600 \mathrm{vdcw} ; 15 / 8^{\prime \prime} \lg x$ $11 / 8^{\prime \prime}$ wd $\times 29 / 64^{\prime \prime}$ thk	Low frequency blocking condenser mounted internally	JAN CM50A203J	JAN C-5
C-113 ${ }^{\text {a }}$	R16-JAN-OMEOA203K	CAPACITOR, fixed: Mica dielectric; 20,000 mof $\pm 108 ; 600 \mathrm{vdcw} ;$ $1-5 / 8^{\prime \prime} \lg x$ 1-1/8" \quad wd $\times 23 / 64^{\prime \prime}$ thk	Low frequency blocking capacitor mounted internally	JAN CM50A203K	JAN C-5
E-101	R16-L-4883-250	PROD ASSEMBLY, test: DC probe; assembly consists of prod tip Weston part/dwg D-122047, haudle Weston part/dwg D-122046, сошро sition IRC resistor type BTS 5.1 megohms $1 / 2$ watt Weston part/dwg ND-24142, bushing Weston part/dwg D-122048, $50^{\prime \prime}$ of rubber covered single conductor wire Weston part/dwg D-73036, plugsocket type AN-3106-8S-1S Weston part dwg ND24103, ferrule for an socket	Test prod and isolating resistor for DC vecrum tube voltmeter	$\begin{aligned} & \text { Weston } \\ & \text { D-122049 } \end{aligned}$	$\begin{aligned} & \text { Weston } \\ & \text { D-122049 } \end{aligned}$

MODEL: VOLTMETERS TS~375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375A/U and TS-375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or Jan Type	Cont. or Govt. Dwg. or Spec. No.
E-10	R16-L-4883-200	PRQ00 ASSENBLY, test: AC test probe; assembly consists of following major parts, probe tip Weston part/dwg D-122017, charging sistor Corp type \#370 BH spec \#600, ferrule Weston part/dwg D-122030, diode tube Raytheon type CK606 (V-107) Weston part ND-24145, resistor IRC Type BIs 5.1 meg Weston part/dwg ND-24142, polysterene insert spec for Weston part/dwg D-122026, case Wes- ton part/dwg D-122028; $51{ }^{11} \quad 1 \mathrm{~g}$ three wire rubber covered cable Weston part/dwg ND-24181, socket part/dwg ND-24105, one cap for AN socket connector Weston part/dwg D-122041; probe $41 / 2^{n} \lg \times 3 / 4^{n}$ diam overall, cable $51^{\prime \prime} \lg , ~ A N$ socket connector $\quad 15 / 8 \lg \times 7 / 8^{\prime \prime}$ diam overall; AC measurements from 50 to 150 megacycles with accuracy of $\pm 5 \%$, from 150 to 300 megacycles with accuracy of $\pm 12 \%$	AC probe for rectification of RF and audio voltages	Westan D-122067	Weston part D-122067
E-102**	R16-P-6306-15	PROD ASSEXBLY, test: AC test probe; consi.sts of prod tip, polysterene insert, 51" lg 3 wire rubber covered cable, probe case $41 / 2^{n} \lg \times 3 / 4^{n}$ diam, charging capacitor (C-110 RCP \#2-11-58), diode tube (V-107 Raytheon CK606 RCP \#F-59) . 5.1 megohm resistor $1 / 2 W$ (Allen Bradley type EB RCP \#1-6-87), socket connector aN-3106-10SL-3S and AN socket cap (RCP \#18-90); shape similar to ordinary test prod and lead with components in handle of prod and with an AN connector on other end; 55" 1 g	AC probe for rectification of RF and audio voltages	RCP-375-28-44	${ }_{44}^{\text {RCP- } 375-28-}$

E-102+4
R16.JACZ-_2037
E-1029
E-102
R16-G-2455-250
H-101*

PROD ASSDMRLY, test: AC test probe; asserbly consists of the following ajor parts, probe tipChicago Ind. Inst. Co. part per dwg. D-122017, D-122018, charging condenser 500 mif C-110 Erie Resistor Corp. type \#3708H spec D-122019, \#600, ferrule Chícago lnd. Inst. Co, ferrule Chicago Ind. Inst. Co part/dwg. D-122030, diode tale D-12020, Raytheon type CK 606
(V-107) Chicago Ind. Inst. Co. part ND-24145, R127 composition resistor IRC type BTS 5.1 megohms 1/2 watt, polysterene insert spec for Chicago Ind. Inst. Co. part dwg D-122026, case Chicago Ind. Inst. Co. part-dwg D-1220e8, $51^{\prime \prime}$ lg three wire rubber covered cable Chicago Ind. Inst. Co. part NDChicago Ind. Inst. Co. part ND10Sin 3 Chicago Ind. Inst. Co. part ND-24105, one cap for an soc ket connector Chicago Ind. Inst Co. part-dwg. D-122041; probe $41 / 2^{n} 1 \mathrm{~g} x$ 3/4n diam. overall cable $51^{\prime \prime}$ lg, AN socket connector $15 / 8^{n} \lg \times 7 / 8^{n}$ diam overall. AC measurements Prom 10 KC to 300 megacycles.
[ROD ASSBMBLY, test: AC probe; consists of prod tip, polystyrene insert, $51^{n} 1 \mathrm{~g}$ three wire rubber covered cable, probe case $2-5 / 8^{n}$ $\lg \times 5 / 8^{\prime \prime}$ di am, busting $1 / 2^{n} \lg x$ 5/8 $8^{\text {" }}$ diam, nlamp (Jetronic part/dwg R-6001) , charging capacitor assembly 500 maf ($\mathrm{C}-110 \mathrm{G} 9$), diode tube (V-107 영 Raytheon CK 5704) 5. (V) resistor $1 / 2 \mathrm{~W}$ (R-127) megohm resistor $1 / 2 \mathrm{~N}$ (R-127) 211 with ferrule (Jetronic part/dwg A-035) ; shape similar to ordinary test prod and lead, with electrical parts located in probe cas and AN cormector onother end; 55 lg

WASHER, flat: Neoprene; round $1 / 8^{n}$ ID, 3/8n, 0D, 0.05 ${ }^{n}$ thk

WASHER, flat: Neoprene; round 7/64n ID $\times 3 / 8^{n}$ OD $\times 1 / 64^{n}$ thk

AC probe for rectification of RF and audio voltages	Chicago Ind. Inst. Co. D-122067	Chicago Ind. Inst. Co. part D-120067
AC probe for rectification of RF and audio voltages	$\begin{aligned} & \text { Jetronic } \\ & \text { C-2037 } \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { C-2037 } \end{aligned}$
Used as gasket to seal case to panel mounting studs against mois ture	Detroit Gasket Mfg. Co. special for Weston	Weston part D-121972
Used as gasket to seal case to panel mounting studs against moisture	Vellumoid Co. special for RCP	$\begin{aligned} & \text { RCP-375-13- } \\ & 207 \end{aligned}$

Reference Symbol	Arely Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or JaN Type	Cont. or Govt. Dwg. or Spec. No.
H-101++	R16-6-2455-250	WASHERR, flat: Neoprene; round, $1 / 8^{n}$ ID, $3 / 8^{n} \mathrm{OD}, 0.05^{n}$ thk	Used as gashet to seal case to panel nounting studs against moisture	Atlantic India Rubber worlos, Inc. special for Chicago	Chicago Ind. Inst. Co. part D-121972
H-1019	\#	WASHER, flat: Neoprene; round, $1 / 8^{n}$ ID $\times 3 / 8^{n}$ OD x $.0 \mathbb{R}^{n}$ thk	Used as gasket to seal case to panel nounting sluors against ooisture	$\begin{aligned} & \text { Jetronic } \\ & \text { A-280 } \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { A-280 } \end{aligned}$
H-102	R16-WS-121952	WASHER, flat: Clear vinylite; round 0.144^{n} ID, $0.38^{n} 00,0.04^{7}$ thik	To decrease leakage mom Weston resistor to pin and resistor deck	Valley Mpg. Co. special for Weston	$\begin{aligned} & \text { Weston Part } \\ & \text { D-121952 } \end{aligned}$
H-102++	R16-WS-121952	WASHER, flat: Clear vinylite; round 0.144 ${ }^{\text {n }}$ ID, $0.38^{n} 00,0.04^{\prime \prime}$ thlk	To decrease leakage from resistors to pin and resistor deck	National Gasket Co. Special for RCP Valley Mfg. Co. special for Chicago Ind. Inst. Co.	$\begin{aligned} & \text { RCP-325-13- } \\ & 212 \end{aligned}$ Chicago,Ind. Inst. Co. part D-121952
H-1029	\#	WASHFR, flat: Clear dynal; round, $9 / 64^{n}$ ID $\times 3 / 8^{n}$ OD $\times 1 / 32^{n}$ thk	To decrease leakage from terminals of resistor to pin and resistor deck	$\begin{aligned} & \text { Jetronic } \\ & \text { C-2044-33 } \end{aligned}$	$\begin{aligned} & \text { JJetronic } \\ & \text { C-2044-33 } \end{aligned}$
H-103	R16-G-2455	WASHER, flat: Vellutex; round 0.136^{n} ID, $0.31^{n} 0 \mathrm{D}, 0.045^{n}$ thk	Casbet between rubber feet and case for water seal	Vellumoid Co. Spec. for Weston	Weston Part D-121944 RCP 375-13- 210 Jetronic C-2043-17
H-104	R33-G-1898	GROMAET: Farbber, black; fits $1 / 4^{n}$ hole diam $1 / 8^{n}$ hole diam. $1 / 16^{n}$ groove width, $3 / 16^{n}$ overall width, 11/32" overall diam	Protects wires passing through chassis	Amer Rad Kdw Part \#1114	Weston Part ND-23283
R-104*	\#	GROMET: Rurbber; fits $9 / 32^{n}$ dian hole; $3 / 16^{\text {n }}$ ID $x 1 / 16^{n}$ graove width $\times 7 / 32 \mathrm{~W}$ overall $\times 7 / 16^{17} 00$	Protects wires passing through chassis	Atlantic India fabber Whes Inc. \#382	$\begin{aligned} & \mathrm{RCP}-375-13- \\ & 12 \end{aligned}$
H-104++	R33-G-1898	GROHOET: Rubber, black; fits1/4" hole; $1 / 8^{n}$ hole diam, $1 / 16^{n}$ groove width, $2 / 16^{\prime \prime}$ overall width, $11 / 32^{n}$ overall diam	Protects wires passing through chassis	Amer Rad Hdwe part \#1114	Chicago Ind. Inst. Co. Part ND- 23283

aromint: Pubber, black; fits $1 / 4^{\prime \prime}$ גiam hole; $1 / 8^{\prime \prime}$ ID $x ~ 1 / 16^{n}$ groove width $x 3 / 16^{n}$ wd overall $x 11 / 32^{n}$ OD

CROMNET: Rubber, black; fíts 3/8" hole; $1 / 4^{n}$ hole diam, $1 / 16^{\prime \prime}$ groove width, $1 / 4^{n}$ overall width, $9 / 32^{n}$ overall dlam

GROMAET: Pubber; fits $3 / 8^{\prime \prime}$ dian hole; 9/32" ID x 1/16" groove width x 1/4" ${ }^{\prime \prime}$ Overall $x 9 / 16^{\prime \prime}$ oD

GROMET: Pubber, black; fits $3 / 8^{\prime \prime}$ hole; $1 / 4^{n}$ holedian, $1 / 16^{n}$ groove width, $1 / 4^{n}$ overall width, $9 / 16^{n}$ overall diam

Gromarer: Rubber, black; fits $1 / \mathbf{2}^{n}$ disi hole; 5/16" ID x3/32" groove width $x 5 / 16^{n}$ wd overall $\times 3 / 4^{n}$ OD

GROMET: Rubber, black; fits $1^{\text {n }}$ hole; $7 / 8^{n}$ hole dilam, $1 / 16^{n}$ groove width, $1 / 4^{n}$ overall width, $13 / 16^{n}$ overall dtam

GRORNET: Rubber, black; fits $1^{\prime \prime}$ hole; 7/8" hole diam, 1/16" groove width, $1 / 4^{n}$ overall width, $13 / 16^{n}$ overall diam

CROMAET: Pubber, black; fits 1^{n} diam hole; $13 / 16^{\text {" }}$ ID $x 1 / 16^{n}$ groove width $\times 5 / 16^{n}$ wd overall $\times 13 / 16^{n}$ OD

CROLOET: Black, rubber; fits $3 / 8^{n}$ duan hole; 7/16" diam hole $\times 3 / 32^{n}$ wd groove x 1/4" wd $x 3 / 4^{n}$ dian overall

GROMAET: Rubber; fits $1 / 2^{\prime \prime}$ dlam hole; $3 / 8^{n} \mathrm{ID} \times 1 / 16^{n}$ groove width $x ~ 1 / 4^{n}$ W overall x $5 / 8^{n}$ OD

CROMET: Black, rubber; fits $3 / 8^{n}$ dian hole; $7 / 16^{\prime \prime}$ diae hole $\times 3 / 32^{n}$ wd groove x 1/4" wd x 3/4" diam overall

GROMAFT: Rubber, black; fits 5/8n diam hole; 5/16" ID x 3/32" groove width $\times 5 / 16^{\prime \prime}$ wd overall $\times 7 / 8^{n} 00 \quad 10$
*Contract NObsr-30009
+Contract $\mathrm{NOa}(\mathrm{S})$-9616 ++Contracts N383s-60744,NOa(S)-12224
©Contract N383s-70996
Jetronic
A-50015-4
Weston Part
ND-21745
RCP-375-13-
11

Jetronic A-50015-4

Weston Part
ND-21745

RCP-375-13-
11

Chicago Ind.
Inst. Co.
Part ND-
24206
Jetronic
A-50015-3

Weston Part
ND-24226
RCP-375-13-
213
Chicago Ind.
Inst. Co.
Part ND-
24206
Jetronic
A-50015-6

Weston Part ND-24113

RCP-375-13-
60

Chicago Ind.
Inst. Co.
Part ND-
24113

Jetronic
A-50015-1
through AC probe compart-
ments
Protects cable passing
through AC probe compart-
gent cover
Protects wires passing
through resistor deck
Protects wires pess ${ }^{1}$ ng
through resistor deck
Protects wires pessing
through resistor deck

Protects wires passing through chassis

Protects wires passing through chassis and resistor deck

Protects wires pessing through chassis and resistor deck

Protects wires passing through chassis and resistor deck

Protects wires passing through resistor deck (TB 104)

Protects cable passing through AC probe compartments

Protects cable passing
through AC probe compartments

Protects cable passing
through AC probe compartment cover

Protects wires passing through resistor deck

Protects wires pessing through resistor deck

Protects wires pessing through resistor deck
Protects wires pessing
through resistor board (TB-
105)
Rubber Works,
Inc. \#763
Atlantic India
Rabber Works,
Inc. Part \#763
Canfleld Rubber
Part 3545
Western Rubber
Co. Part G1151
Western Rubber
Co. Part G1151

Atlantic India Rubber part 1259

US Rubber style G-5092

Atlantic India Rubber Works, Inc. \#763

Atlantic India Inc. Part \#763

Canfield Rubber Part 3545

Western Rubber Co. Part G1151

Western Rubber Co. Part G1151

Plerce Roberts Part 46E

Canfield Rubber Co. Part 2029

Atlantic India
Rubber Works
Inc. \$230
Canfield Rubber
Co. Part 2029

Canfield Rubber
Co. Part 1420

MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

	I-101 ©	$\begin{aligned} & \text { R171-12032-119- } \\ & 110 \\ & \hline \end{aligned}$	Lictrr, indtcator: w/lens; consists of white jewel lens (Dialco part 81-435), lamp socket (Jetronic part/dwg A-060), insulating bushing (Jetronic part/dwg A-115), bracket (Jetronic part/dwg A-316), washer (Jetronic part/dimg A-110), and bushing (Jetronic part/dwg $11 / 16^{\prime \prime}$ diam mtg hole; vertical mtd, lamp replaceable from front; threaded jewel; solder lug teraipanel LIGHT; indicator: w/lens; $1 / 2^{n}$ dlam, red jewel lens; for miniature bayonet base, T-3 $1 / 4 \mathrm{bulb}$; open frame; nickel plated brass shell; $11 / 2^{n} 1 g \times 13 / 16^{n}$ wd x 0.687^{7} diam mtg/hole, $5 / 16^{n} \max$ thk penel; vertical std; lanp replaceable from front; threaded jewel; two solder lug terminals shallow depth behind panel LIGHT; indicator: w/lens; $1 / 2^{n}$ diam, red jewel lens; for miniature bayonet base, T-3 $1 / 4$ bulb; U-shaped frame; $19 / 16^{n} \lg \times 11 / 8^{n}$ wd; $0.687^{\prime \prime}$ dian mtgAnole, $3 / 8^{n}$ max thk panel; vertically mounted, lamp replaceable from front; threaded jewel; (extension bushing); two solder lug terminals; features shallow depth behind panel LIGHT, indicator: w/lens; consists of red jewel lens (Dialco part 81-431), lamp socket (Jetronic part/dwg A-060), insulating bushing (Jetronic part/dwg A-115,) bracket (Jetronic part/dwg A-316), washer (Jetronic part/dwg A-110), and bushing (Jetronic part/dwg $\mathrm{A}-318$) $\mathrm{m}_{1-3 / 4^{n}} \mathrm{lg} \times 11 / 16^{\prime \prime}$ wd x $11 / 16^{n}$ diaa mtg hole; vertical motd, lamp replacable from front;		p/o Jetronic C-2041 Weston D-122008 RCP-375-17- 16R Drake Míg. Co. part special 166-K p / o Jetronic C-2041	p/o Jetronic C-2041 Weston Part D-122008 RCP-375-17- 16R Chicago Ind. Inst Co. D-122008 p/o Jetronic C-2041
\bigcirc						

MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

MODEL: VOLTMETERS TS-375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

AN-16-35TS375-3 Section VI

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Figiction	Mfr. \& Desig. or JAN Type	Cont, or Govt. Brg. or Spec. No.
$\begin{aligned} & \mathrm{R}-110 \\ & \text { (Cont.) } \end{aligned}$		A taper; insulated contact arm; high torque; bushing $3 / 8^{7}-42 x$ $3 / 8^{\prime \prime} \mathrm{lg}$			
R-110**	R16-P-6861	RESISKOR, variable: Same as R-110	Coarse zero balance control in heater circuit of $\mathrm{V}-101$ and $\mathrm{V}-1 \mathrm{UE}$	```Clarostat-43W- HT Alternate JAN RAZOAZSAIROAK```	$\begin{aligned} & \text { PCR-375-4-107 } \\ & \text { JAN R-19 } \end{aligned}$
R-110 ${ }^{\text {a }}$	$\begin{aligned} & \text { R16-JAN } \\ & \text { RA2OA2SA3ROAK } \end{aligned}$	RESISIOR, variable: Same as R-110	Coarse zero balance control in heater circuit of V-101 and V-102	JAN RADOA2SA3RDAR	JAN R-19
*R-111	R16-R-18770-600	RESISTOR, fixed: Composition; 10 meg $\pm 2 \%, 0.05 \mathrm{w} ; 1.75^{\prime \prime} \lg \times 0.362^{n}$ OD with axial clearance hole for $0.165^{\prime \prime}$ dian rod; moisture resistant wax; two tab terminais $7 / 16^{\prime \prime}$ $\lg \times 3 / 16^{\prime \prime} \mathrm{wd}$; high accuracy, low temperature coefficient ceramic tube type	Part of AC diode balancing network	Weston D-108953	Weston Part D-108953
${ }^{ \pm} \mathrm{R}$-112	R16-R-18770-920	RESISTOR, fixed: Composition; 15 meg $\pm 2 \% ; 0.037$ W; $1.75^{\prime \prime} \lg \times 0.362^{\prime \prime}$ $O D$ with axial clearance hole for $0.165^{\prime \prime}$ dsam rod; molsture resistant wax coating; two tab terminals $7 / 16^{\prime \prime} \lg \times 3 / 16^{\prime \prime} \mathrm{wd}$; high accuracy, low temperature coefficient ceramic tube type	Part of AC diode balancing network	$\begin{aligned} & \text { Weston } \\ & \text { D-108954 } \end{aligned}$	Weston Part D-108954
*R-113	R16-R-18770-920	RESISTOR, fixed: Same as R-112	Corrects AC callbration on amplifier for 12,30 and 120 volts		
R-114	R16-R-18756-600	RESISTOR, fixed: Composition; 250,000 ohes $\pm 1 \% ; 1 / 2 \mathrm{~W} ; 1.75^{\mathrm{n}} \mathrm{lg}$ $\times 0.362^{\circ} 00$ with axial cleararce hole for $0.165^{\prime \prime}$ atam rod; moist.ure resistant wax coating; two tab terminals 7/16" $\lg \times 3 / 16^{n}$ wd; high accuracy; 10w temperature coefficient ceramic tube type	300 volt section of voltage multiplier divider	$\begin{aligned} & \text { Heston } \\ & \text { D-112378 } \end{aligned}$	$\begin{aligned} & \text { Weston Part } \\ & \text { D-112378 } \end{aligned}$

N MODEL: VOLTMETERS TS-375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	MPr. \& Desig. or JaN Type	Cont. or Govt. Dwg. or Spec. No.
R-116 ${ }^{\text {** }}$ (Cont.)		axial clearance hole for \#6 screw formtg			
R-116++	$\begin{aligned} & \text { R16-R-17362-13- } \\ & 250 \end{aligned}$	RESISTOR, fijxed: Metal fillm; 625,000 ohss, $\pm 1 \% ; 2 \mathrm{~W} ; 1.75^{\prime \prime} \lg x$ 9/32" OOw1th axial clearance hole for 140 d dam rod; molsture resistant wax coating; wire leads; protected by layer of vitreous enamel; stabjlity of wire wound	Part of diode balancing network for 120 volt AC range	Continental Carbon Inc. Type X-2	Chicago Ind. Inst. Co. Part D-122097
R-116 ${ }^{\text {P }}$	R16-R-18759-187	RESISIUR, fixed: Deposited carbon f11m; 625,000 ohms $\pm 1 \%, 2 W ; 1-3 / 4^{\prime \prime}$ $\lg \times 1 / 4^{\prime \prime}$ diam; insulated, moisture resistant; two tab terminals 15/32" $\lg \times 3 / 16^{\prime \prime}$ wed axial clearance hole $3 / 16^{\prime \prime}$ dian for mtg	Part of diode balancing network for 120 volt AC range	$\begin{aligned} & \text { Jetronic } \\ & \text { A-50020-4 } \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { A-50020-4 } \end{aligned}$
R-117	R16-R-18763-500	RESISTOR, fixed: Composition; 1.875 meg $\pm 11 / 2 \% ; 0.3 \mathrm{~W} ; 1.75^{\prime \prime}$ $\lg \times 0.362^{\prime \prime} 0 \mathrm{D}$ with axial clearance hole for $0.165^{\prime \prime}$ diam rod; moisture resistant wax coating; two tab $\begin{array}{lll}\text { resimiant } \\ \text { terminals } & 7 / 16^{\prime \prime} & \mathrm{lg} \\ \times 3 / 16^{\prime \prime} & \mathrm{wd} \text {; }\end{array}$ high accuracy, low temperature coefficient ceramic tube type	30 volt section or voltage multiplier divider	$\begin{aligned} & \text { Weston } \\ & \text { D-122035 } \end{aligned}$	$\begin{aligned} & \text { Weston Part } \\ & \mathrm{D}-122095 \end{aligned}$
R-117 ${ }^{\text {\% }}$	R16-R-17390-250	RESISTOR, flyed: Deposited metal film; 1.875 meg-ohas, $\pm 1 \% ; 2 \mathrm{~W}$; 0.05\% per degree C negative; $13 / 4^{n}$ $\lg \times 9 / 32^{\prime \prime}$ diam insulated, molstave resistant; 2 radial wire leads; axial clearance hole for \#6 screw mtg	30 volt section of voltage multiplier divider	Continental Carton Inc. Type X-2	$\begin{aligned} & \text { RCP-375-1-6- } \\ & 88 \end{aligned}$
R-117++	R16-R-17390-250	RESISTOR, fixed: Metal Milm; 1.875 meg-ohms $\pm 1 \% ; 2 \mathrm{~W} ; 1.75^{\prime \prime} \mathrm{lg}$ x $9 / 32^{\prime \prime}$ OD with axial clearance hole for 140 diam rod; moisture resistant wax coating; wire li:ads; protected by layer of vitreous enamel; stability of wire wound	30 volt section of voltage multiplier divider	Continental Carbon Inc. Type X -2	Chicago Ind. Inst. Co. D-122035

$\text { Revised } 15 \text { Febr }$	*R-123	R16-R-18701-150	RESISTOR, fixed: Wire wourd; 25,000 ohes $x \pm 1 / 2 \% ; 1 / 4 \mathrm{~W}$, $\operatorname{maxi}-$ ㄸum operating temperature $55^{\circ} \mathrm{C}$, 0.55^{n} diamx $1 / 2^{\prime \prime} \mathrm{lg}$; moisture resistant wax; brass end flanges form extended eyelet terminals; mt by single hole through center for 1/10" diaz screw; Weston type \#139 spool	Deteraines DC amplifier sensitivity	$\begin{aligned} & \text { Weston } \\ & \text { D }-122121 \end{aligned}$	$\begin{aligned} & \text { Weston Part } \\ & \text { D-122121 } \end{aligned}$
	R-124	R16-R-18691-750	RESISTOR, fixed: Wire wound; 16,670 ohms $\pm 1 / 28 ; 1 / 4 \mathrm{~W}$, $\max 1 \mathrm{~m} \frac{1}{}$ operating temperature $55^{\circ} \mathrm{C}, 0.55^{\prime \prime}$ diam $\times 1 / 2^{\prime \prime} 1 g$; moisture resistant wax; brass end flanges form extended eyelet terminals; mit by single hole through center for $1 / 10^{n}$ diam screw; Weston type \#139 spool	Determines calibration on 3 volt AC range	$\begin{aligned} & \text { Weston } \\ & \text { D-122122 } \\ & \text { JAN } \\ & \text { RB10B1667ID } \end{aligned}$	Weston Part D-122122 JAN R-93
	R-124++	R16-R-18691-750	RESISTOR, flxed: Wire wound; 16,670 ohms $\pm 1 / 2 \%$	Determines calibration on 3 volt AC range	$\begin{aligned} & \text { JAN RB 1OB } \\ & \text { 16671D } \end{aligned}$	JAN R-93
1	R-1240	R16-8-18691-755	RESISTOR, fixed: Wire wound; 16,670 ohas $\pm 1 / 2 \%, 1 / 4 \mathrm{~W} ; 1 / 2^{\prime \prime} 1 \mathrm{~g}$ x $9 / 16^{\prime \prime}$ diam; moisture resistant; two lug terminals $7 / 16^{\prime \prime} \lg \times 3 / 32^{\prime \prime}$ wd; axial clearance hole $5 / 32^{\prime \prime}$ diam for mtg	Determines calibration on 3 volt AC range	$\begin{aligned} & \text { Jetronic } \\ & \text { A-50021-3 } \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { A-50021-3 } \end{aligned}$
	R-125	R16-R-18689-50	RESISTOR, fixed: Wire wound; 14,000 ohms $\pm 1 / 2 \% ; 1 / 4$ W, Baximm operating temperature $55^{\circ} \mathrm{C}, 0.55^{\prime \prime}$ dian $\times 1 / 2^{n} \mathrm{lg}$; moisture resistant wax; brass end flanges form extended eyelet temainals; wt by single hole through center for $1 / 10^{\prime \prime}$ diam screw; Weston type \#139 spool	Determines in conjunction with R-109 sensitivity of 1.2 volt AC range	$\begin{aligned} & \text { Weston } \\ & \text { D-122123 } \\ & \text { JAN } \\ & \text { RB10B1 } 4001 D \end{aligned}$	Weston Part D-122123 JAN R-93
	R-125++	\#	RESISTOR, fixed: Wire wound; 14,000 ohms $\pm 1 \%$	Determines in conjunction with R-109 sensitivity of 1.2 volt AC range	JAN RB10B14001F	JAN R-93
I	R-129	R16-R-18689-75	RESISTOR, fixed: Wire wound; 14,000 ohms $\pm 1 / 2 \%, 1 / 4 \mathrm{~W} ; 1 / 2^{\prime \prime} \mathrm{lg}$ $\times 9 / 16^{n}$ diam; moisture resistant; two lug terminals $7 / 16^{n} \lg \times 3 / 32^{n}$ wd; axial clearance hole $5 / 32^{\prime \prime}$ diam for mtg	Determines in conjunction with R-109 sensitivity of 1.2 volt AC range	$\begin{aligned} & \text { Jetronic } \\ & \text { A-50021-1 } \end{aligned}$	Jetronic A-50021-1
	R-126	R16-R-17493	RESISTOR, fixed: Composition; 5.1 meg $\pm 5 \%$ i $1 / 2 \mathrm{~W}$; characteristic F ; $13 / 32^{\text {n }} \lg \times 1 / 8^{\prime \prime}$ diam (note body	Isolating resistor in DC probe	Internitional Resistance Co. type BTS	Weston Part ND-24142
N	Contracts	0174,36339,38158,4	*Contract NObsr-30009 +Contract	a(S)-9616 ++Contracts N383s	44, $\mathrm{NO}(\mathrm{S}) 1224$	ntract N383s-

TABLE 6-3. TABLE OF REPLACEABLE PARTS (Cont.)
MODEL: VOLTMETERS TS-375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETRRS TS-375/U and TS-375A/U LESS ACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or Jan Type	Cont. or Govt. Dwg. or Spec. No.
$\begin{aligned} & \text { R-126 } \\ & \text { (Cont.) } \end{aligned}$		diammust not be larger than $0.14^{\text {n }}$); insulated, moisture resistant			
R-126**+ 3	$\begin{aligned} & \text { R16-JAN- } \\ & \text { RCOBFFST5, J } \end{aligned}$	RESISTOR, f1xed: Composition; 5.1 megohms $\pm 5 \% ; 1 / 2 \mathrm{~W}$	Isolating resistor in DC probe	$\begin{aligned} & \text { JAN } \\ & \text { RC2OBF515.J } \end{aligned}$	JAN R-11 Chicago Ind. Inst. Co. Part ND-24142
R-127	R16-R-17493	RESISTOR, fixed: Same as R-126	Isolating resistor in AC probe		
R-127* 0	R16-JANRC20BF515, J	RESISTOR, flixed: Same as R-126**++C3	Isolating resistor in AC probe		
R-128	R16-JAN-RW31G501	RESISTOR, fixed: Wire wound; 500 otwe $\pm 5 \%$	Heater to keep molsture out when instrument is turned off	JAN RW31G501	JAN R-26
R-129	R16-JAN-RW1G501	RESISTOR, flxed: Same as R-128	Same as above		
R-130	R16-R-17256-55-50	RESISTOR, fixed: Composition; 10 ohes $\pm 20 \%$	$\begin{aligned} & \text { Reduce brightness of "ON" } \\ & \text { lamp } \end{aligned}$	JAN RCCOAE1OOM	JAN R-11
R-130** ${ }^{\text {O }}$	$\begin{aligned} & \text { R16-JAN- } \\ & \text { RC } 20 \mathrm{BF} 100 \end{aligned}$	RESISTOR, fixed: Composition; 10 ohns; $4208 ; 1 / 2 \mathrm{~W}$	Reduce brightress of "ON". 18표	JAN AC20BF100N	JAN R-11
+R-131	\#	RESISTOR, variable: Wire wound 2,000 ohms $\pm 10 \% ; 2 \mathrm{~W} ; 100^{\circ} \mathrm{C}$ cax continuous oper; 3 solder lug tera; metal enclosed molded phenolic bese $11 / 8^{n^{n}}$ diam $x 9 / 16^{n}$, d; round metal slotted shaft $1 / 4^{n_{s}}$ diam $\times 1 / 8^{\prime \prime}$ ig from metg surface; A taper, insulated contact arm; high torque; bushing $3 / 8^{\prime \prime}-32 x$ $3 / 8^{n}, 1 g$	Fine adjustment for anplifier output	Clarostat Series 43-fir	Weston Part ND-24547
R-131** ${ }^{\text {(}}$	R16-P-6893-850	RESISTOR, variable: Same as R-131	Fyne adjustaent for amplifier output	Clarostat Series 43W-HT Jetronic CLR-43W-HTTK- 10 Alternate JAN RADOARSA- 202AK	```RCP-375-4- 105 Jetronic Part CIR-43W-AHRK- 10 JAN R-19```

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or JAN Type	Cont. or Govt. Dwg. or Spec. No.
$\begin{aligned} & \text { R-1330 } \\ & \text { (Cont.) } \end{aligned}$		$1 / 4^{n}$ diam; insulated, moisture resistant; two tab terminals $15 / 32^{\prime \prime}$ $\lg x 3 / 16^{n} w d ;$ axial clearance hole $3 / 16^{n}$ diam for mitg			
+R-134	\#	RESISTOR, variable: Composition 2 megohms, $\pm 20 \% ; 0.25 \mathrm{~W} ; 100^{\circ} \mathrm{C}$ eax continuous oper; 3 solder lug term; metal enclosed molded phenolic base $11 / 8^{n}$ diam $\times 9 / 16^{n} \mathrm{~d}$; round metal slotted shaft $1 / 4^{\text {n }}$ diam $\times 1 / 8^{n} \mathrm{lg}$ from mitg surface; A taper; insulated contact arm; high torque; bushing $3 / 8^{n}\llcorner 32 \times$ $3 / 8^{n} \mathrm{lg}$	Part of AC diode balancing network	Clarostat Series 37	Weston Part ND-24546
R-134\#\# ${ }^{\text {a }}$	R16-P-5597-60	RESISTOR, variable: Same as R-134	Part of AC diode balancing network	Clarostat Type 37W-HT Jetronic CLR-37N-2M-20	RCP-375-4-112 Jetronic Part CLR-37W-2M-20
R-134++	\#	RESISTOR, variable: Composition, 2 megohss ± 20; $1 / 3 \mathrm{~W}$; 3 solder lug term; metal enclosed molded phenolic base $15 / 16^{n}$ dian $\times 9 / 16^{n}$ depth; round metal slotted shaft $-1 / 4^{n}$ dian $x \quad 1 / 8^{n} \mathrm{lg}$ from mig surfaces; straight taper; insulated contact arm; split bushing for lociding shaft	Part of AC diode balancing network	International Resistance Co. Type "Q"	Chicago Ind. Inst Co. Part ND-24546
+R-135	\#	RESISTOR, fixed: Composition; 15, 000,000 o mst 10%; $1 / 2 \mathrm{~W}$	Part of AC diode balancing network	JAN RC20AE156K	JAN R-11
$\mathrm{R}-135$ \% ${ }^{\text {c }}$	$\begin{aligned} & \text { R16-JAN-RC20BF- } \\ & \text { 156K } \end{aligned}$	RESISTOR, fixed: Composition; $15,000,000$ ohms $\pm 10 \% ; 1 / 2 \mathrm{~W}$	Part of AC diode balancing network	JAN RC20BF156K	JAN R-11
+R-136	\#	RESISTOR, fixed: Same as R-135	Corrects AC callbration on 12,30 and 120 volts		
$\mathrm{R}-13 \mathrm{~B}^{\ddagger \#}$ (${ }^{\text {a }}$	$\begin{aligned} & \text { R16-JAN-RC20BF- } \\ & 156 K \end{aligned}$	RESISTOR, fixed: Same as R-135\#0]3	Corrects AC calibration on 12, 30 and 120 volts		

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or JAN Type	Cont. or Govt. Dwg. or Spec. No.
S-103++	$\begin{aligned} & \text { R16-S11279-529- } \\ & 500 \end{aligned}$	SWITCH, rotary: Same as S-103	Selects AC volts + DC volts or -DC volts	OAR-34343-PI	```Chicago Ind. Inst. Co. Part D-122109```
S-103 3	R16-JACZ-B1069	SWITCH, rotary: 4 pole, 3 position; 1 deck; solid silver alloy cont; phenolic body, wax impregnated; $1-7 / 8^{\prime \prime}$ diam $\times 1-3 / 32^{n}$ d; shorting type; solder terminals; single hole mtg, bushing $3 / 8^{n}-32$ tha $\times 3 / 16^{11} 1 \mathrm{~g}$	Selector switch	$\begin{aligned} & \text { Jetronic } \\ & \mathrm{B}-1069 \end{aligned}$	$\begin{aligned} & \text { Jetronic } \\ & \text { B-1069 } \end{aligned}$
T-101	R17T-7218-150	TRANSFDRMER, power: FYlament and plate type; 115 volts, 50 to 1600 cyc; 3 output windirgs; Sec \#1, 500 v at 10 ma CT; impr petrolews residure coबponind and then potted; enclased metal case; metal case without teransals $3.12^{\prime \prime} 1 \mathrm{~g} \times 2.62^{\prime \prime}$ wd $\times 2.75^{\prime \prime}$ deep; 9 active and 4 dumay solder terminals atd on a line intersecting the mtg bolts and are one $1 / 2$ mtg-c; four 0.173^{n} diam holes on $21 / 2^{\prime \prime} \times 2^{n}$ mtg $-c$; diagram Weston dwg D-121995	Supplies power to filaments and plates	$\begin{aligned} & \text { Weston } \\ & \text { D-121994 } \end{aligned}$	$\begin{aligned} & \text { Weston Part } \\ & \text { D-121994 } \end{aligned}$
T-101 ${ }^{\text {\# }}$	R16-T-6680-30	TRANSFDRMER, power: Plate and filament type; primary 115 volts $50-1600$ cycles; 3 output winding, sec'd \#1-500才 CT 10 ma, sec'd在2--5 volts 2.5 emps, $\mathrm{sec}^{\prime} \mathrm{d}$ \#36.3 volts, 2.5 amps, vacuum varnish impregnated; hermetically sealedmetalcase; 3.12" $1 \mathrm{gx} 2.62^{\prime \prime}$ wd $\times 2.72^{\prime \prime} \mathrm{h}$; 9 active and 4 demamy terms mutd on bottom of case; four $8-32$ tapped mtg holes on $21 / 2^{n} x$ $2^{n} \mathrm{mtg} / \mathrm{c}$	Supplies power to filament and plates	Industrial Trans. Co. special for RCP	$\begin{aligned} & \mathrm{RCP}-375- \\ & 25-83 \end{aligned}$
T-101++	\#	TRANSFDRNER, power: Filament and plate type; 115 volts 50 to 1600 cycles primary; 3 secordary windings; Sec \#1, 500 V at 10 ma CT; Sec \#2, 6.3 V at $2 A$; Sec \#3, 5 V at 2A; Built according to MIL-T-27,	Supplies power to filament and plates	United Transformer Co. special for Chicago Ind. Inst. Co.	Chicago Ind. Inst. Co. Part D-121994

	$\begin{aligned} & \text { T-101++ } \\ & \text { (Cont.) } \end{aligned}$		Grade 1; 3.12 ${ }^{\text {n }} \mathrm{lg} \mathrm{x}$ 2.62" wdx 2.75^{n} deep; four mig studs on $21 / 2 \times 2^{\prime \prime} \mathrm{mtg} / \mathrm{c}$			
	T-101 (3)	R16-JACZ-B1073	TRANSFORMER, power: Plate and filament type; prisary 115 volts 50-1600 cycles; 3 secondary windings; Sec \#1, 500 V at 10 ma CT; Sec $\mathrm{H} 2,5 \mathrm{~V}$ at 2.5 amps; Sec $\# 3$, 6.3 volts at 2.5 amps; impregnated; hermetically sealed metal case; $3-3 / 16^{n} \lg x 2-11 / 16^{\prime \prime}$ wd x $2-3 / 4^{n} \mathrm{~h}$; 9 active and 5 dumiry teres motd on botto of case; four 8-32 tapped mitg holes on $2-1 / 2^{n}$ צ $2^{\prime \prime} \mathrm{mt} / \mathrm{c}$	Supplies power to filament and plates	```Industrial Transformer Corp. Special for Jetronic```	$\begin{aligned} & \text { Jetronic } \\ & \text { B-1073 } \end{aligned}$
	V-101	N16T-56685	TUBE, electron	DC input voltage amplifier	JAN-6SJ7	JAN-1A
	V-108	N16T-56665	TURE, electron: Same as V-101	Balancing section of input of DC amplifier		
	V-103++	N16T-56677	TUBE, electron	Output of DC amplifier	JAN-6SL7	JAN-1A
	V-103	N16T-56677	TUBE, electron	Output of DC amplifier	JAN-6SL7-GT	
	v-104	N16T-55735	TUBE, electron: Rectifier	Supplies DC potential to tubes	RMA 5Y3-GT	Weston Part ND-23411
	V-104**	N16T-55735	```TURE, electron: Full wave recti- f1er```	Supplies DC potential to tubes	JAN-5Y3-GT	JAN-1A
	v-104++	N16T-55735	TURE, electron	Supplies DC potential to tubes	JAN-5Y3-GT	JAN-1A
	v-105	N16T-69810	TUEE, electron	Regulates voltage to cathode on pin 6 of $\mathrm{V}-103$	JAN-991 (NE 16)	JAN-1A
	v-106	N16T-69910	TUBE, electron: Same as V-105	Regulates voltage to cathode on pin 3 of $\mathrm{V}-103$		
	v-107	N16T-66065	TUFE, electron: Diode, cathode type	RF diode in AC probe	Raytheon CB-606-BX	$\begin{aligned} & \text { Weston Part } \\ & \text { ND-24145 } \end{aligned}$
	v-107++	N16T-66065	TUBE, electron: Diode, cathode type	RF diode in AC probe	Raytheon CZ-60G-8X	```Chicago Ind. [nst. Co. Part ND-24145```
	V-1078	N16T-75704	TUIBE, electron: Diode, cathode type	RF diode in AC probe	Raytheon CK 5704	Raytheon CK 5704
	V-108	N16T-66065	TUBE, electron: Same as V-10\%	Balancting diode for V-107		
$\begin{aligned} & 0 \\ & \substack{1 \\ \hline \\ \infty} \end{aligned}$	ntracts N	74,36339,38158,	*Contract NObsr-30009 +Contract	(S)-9616 ++Contracts N383s-	44, $\mathrm{NOB}(\mathrm{S}) 12204$	ntract N383s-

TABLE 6-3. TABLE OF REPLACEABLE PARTS (Cont.)
MODEL: VOLTMETERS TS-375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESS ACCESSORIES

MODEL: VOLTצETERS TS-375/U and TS-375A/U
MAJOR ASSEMBLY: VOLTMETERS TS-375/U and TS-375A/U LESSACCESSORIES

Reference Symbol	Army Stock No. Navy Stock No.	Name of Part and Description	Function	Mfr. \& Desig. or Jan Type	Cont. or Govt. Dwg. or Spec. No.
W-101 ${ }^{\text {\% }}$	\#	CABIE ASSEMBLY, power: Type SJ, 7 ft incl terminations; molded rubber male plug one end, molded rubber female plug other end	Line Cord	Cords Ltd \#353-1	RCP-375-28-52
W-101+4	\#	CABIE ASSEMBLY, power: Type SI; two \#16 AWG stranded conductors; 250 working volts; 8 fit. long; one end of cable terminated with Belden \#H-1047 rubber plug, other end terminated withBelden \#H-1289 motor connector	Line Cord	Belden Mfg. Co. per Chicago Ind. Inst. Co. D.66187 Cord Cx-337/u	Chicago Ind. Inst. Co. Part D-66187
W-101 3	R16CODL-18-2SJ	CABLE ASSEMRLY, power: Type SJ, 7 ft $1 g$ incl terminations; molded rubber male plug one erad. molded female plug other end	Line Cord	Cords Ltd 18-2SJ	Jetronic CODL-18-2SJ
W-102	R16-6-4883-200	LEAD, test: \#20 stranded tinned copper, 70 strands of $\# 36$; red rubber covered; 1,000 volts max; $1 / 32^{\prime \prime}$ wall rubber; $52^{\prime \prime} 1 \mathrm{~g}$ excluding terminals; Weston test prod, bushing and sleeve parts D-66383; D-65784 and D-65781 on one end, Weston spade terminal and sleeve parts D-79652 and D-79653 at other end	To make connections from circuit under test to binding posts	$\begin{aligned} & \text { Weston } \\ & \text { D-79660 } \end{aligned}$	Weston Part D-79650
W-102**	\#	IEAD, test: ${ }^{H} 20$ AWG tinned copper wire; stranded, 40 strands \#36 wire, red rubber, covered, 1000 V aax; 52" lg excl term; test prod and tip one end; \#10 spade lug other end	To make connections from circuit under test to binding posts	$\begin{aligned} & \text { \&CP } \\ & \# 903 S R \end{aligned}$	RCP \#903SR

Figure 7-1 Volfmefers TS-375/U and TS-375A/U, Complefe Schemafic

Figure 7-2A. Voltmeter TS-375A/U, Contracł N383s-70996, Practical Wiring Diagram

Figure 7-2A. Voltmeter TS-375
Revised 15 February 1955

INDEX

INDEX—Continued

