CHAPTER 4
 SCHEDULED MAINTENANCE

4-1. INTRODUCTION. This chapter contains preventive maintenance and performance test procedures. for Model 28 Compact Page Printer (CPP) KSR and RO teletypewriter sets, to be accomplished on a scheduled basis. The purpose of scheduled maintenance is to anticipate and eliminate potential trouble sources in an effort to minimize interruptions to service. Recommended preventive maintenance actions are tabulated in a scheduled maintenance action index along with suggested intervals of performance and references to paragraphs containing specific instructions for performing maintenance actions. The scheduled maintenance actions in this manual are cancelled when the Planned Maintenance System (PMS) is implemented for this equipment aboard your ship or station.

4-2. SCHEDULED MAINTENANCE ACTION INDEX. Table 4-1 lists scheduled maintenance actions to be performed on CPP teletypewriter sets. The Periodicity column indicates the interval and sequence of maintenance action performance. D denotes daily. W denotes weekly. M denotes monthly, Q denotes quarterly, and R denotes as required. The Maintenance Action column briefly describes the maintenance action to be performed. The Reference column lists the paragraph describing the maintenance action in further detail.

4-3. EQUIPMENT AND MATERIALS REQUIRED. The following equipment and materials are required to accomplish preventive maintenance and
performance test procedures
included in this chapter.
Clean, lint-free cloths.
Cleaning solvent:
Trichloroethane $0-T-620$

Lubricants: Oil. MIL-L-17672
Grease, MIL-G-23827
Test equipment and tools
listed in table 1-5.
4-4. SAFETY PRECAUTIONS. The
following are general safety precautions that are not related to any specific procedures and therefore do not appear elsewhere in this publication. These are recommended
precautions that personnel must understand and apply during many phases of operation and maintenance.
a. Keep Away From Live Circuits. Operating personnel must at all times observe all safety regulations. Do not replace components or make adjustments inside the equipment with the primary power applied. Under certain conditions. dangerous potentials may exist when the power control is in the off position due to charges retained by capacitors. To avoid casualties, always remove power and discharge and ground a circuit before touching it.
b. Do Not Service or Adjust Alone. Under no circumstances should any person reach into or enter the enclosure for the purpose of servicing or adjusting the equipment except in the presence of someone who is capable of rendering aid.
c. Resuscitation. Personnel working with or near high voltage should be familiar with modern methods of resuscitation. Such information may be obtained from the Bureau of Medicine and Surgery.

4-5. PREVENTIVE MAINTENANCE PROCEDURES. The following paragraphs contain scheduled preventive maintenance procedures referenced in table 4-1.
a. Daily Inspection and Cleaning. Daily inspection and cleaning of the teletype machine is performed as follows:

CAUTION

Never increase tension on print hammer for darker print: replace the ribbon. When replacing type box, ensure that it is properly positioned and securely fastened. Ensure that ribbon is correctly installed.
(1) Inspect ribbon
for wear and frayed edges; replace if required.
(2) Inspect wire rope for frayed ends. cuts, and broken strands; replace if required.
(3) Inspect type and type box for excessive wear on pallets; clean with stiff brush if smudging is evident.
(4) Inspect machine for loose, broken, or worn parts.

CAUTION

While cleaning teletype machine, ensure that springs
and adjustable parts are not disturbed.
(5) Inspect machine for dust, lint, and paper shavings.
(6) Wipe inside and outside of machine with soft. lint-free cloth.
(7) Check paper supply: ensure paper roll is correctly installed; ensure that sufficient paper is provided on roll.
b. Weekly Inspection and Cleaning. Weekly inspection and cleaning of the teletype machine is performed as follows:

NOTE

When a signal test set is not available, the orientation range can be determined while receiving the characters $R Y$ from the keyboard or a distant station.
(1) Check
orientation range as follows:
(a) Set POWER
switch to ON.
(b) Supply loop current and test signal.
(c) Rotate range finder knob in one direction until errors appear in copy.
(d) Retract range finder setting slowly until errors disappear. Note number of points indicated.
(e) Rotate
range finder knob in opposite direction and determine points

Table 4-1. Scheduled Maintenance Action Index

Periodicity	Maintenance Action	Reference
D	Inspect and clean as necessary.	4-5a
D	Check paper supply.	4-5a (7)
D	Inspect and lubricate if necessary.	4-6.4-7
W	Check points of range.	4-5b (1)
W	Clean selector magnet pole faces.	4-5b (2)
W	Check keyboard contact wires.	4-5b (3)
W	Check distributor code level contacts.	4-5b (4)
W	Check distributor solenoid contacts gap.	4-5b (5)
W	Lubricate.	4-6.4-7
W	Check operation of keyboard.	2-3
M	Disassemble and inspect.	4-5c
M	Inspect main shaft.	4-5c (2)
M	Inspect function box.	4-5c (3)
M	Inspect keyboard.	4-5c (4)
M	Inspect selector mechanism.	4-5c (5)
M	Reassemble.	4-5c (6)
M	Check left margin.	4-5c (7)
M	Check right margin.	4-5c (8)
Q	Disassemble and clean in cleaning solvent.	4-5d
Q	Lubricate.	4-6, 4-7
Q	Check adjustments.	4-5d (6)
Q	Inspect selector mechanism.	4-5c (5)
Q or R	Conduct performance tests.	4-8

indicated as described in steps (c) and (d) above. Note number of points indicated.
(f) Difference between number of points indicated in steps (d) and (e) above should be 72 points (minimum) .
(2) Clean selector magnet pole faces by running a clean piece of bond paper between them. Do not use teletype paper.
(3) Check keyboard contact wire clearances (use feeler gaugel. With keyboard in reset condition and T-levers in marking positions. clearances between contact wires and terminals should be from 0.010 inch (minimum) to 0.025 inch (maximum). With keyboard in reset condition and T -levers in spacing condition, clearances between contact wires and terminals should be from 0.020 inch (minimum) to 0.040 inch (maximum).
(4) Check
distributor code level contact gaps (use feeler gauge). place cam follower lever on high part of cam by tripping clutch manually and rotating distributor shaft. Clearance between first six contact gaps from clutch end of shaft should be from 0.020 inch (minimum) to 0.030 inch (maximum).
(5) Check
distributor solenoid contact
gap. With distributor clutch in latched or stop position. solenoid contact gap should be from 0.025 inch (minimum) to 0.030 inch (maximum).

c. Monthly Inspection

and cleaning. Monthly
inspection and cleaning of the
teletype machine is performed as follows:
(1) Disassemble major units from machine; remove cover, typing unit. keyboard, and motor unit from keyboard base. (Refer to disassembly procedures in paragraph 6-12a through 6-121.)
(2) Inspect main shaft. Check all clutches and wicks, paying particular attention to evidence of wear on clutches.
(3) Inspect function
box. Check alignment of function pawls and spring tensions. Check adjustment of stripper blade. Check rear of function box for bits of paper or accumulations of dirt. Clean as required.
(4) Inspect
keyboard. Inspect gear shift assembly for worn or cracked teeth on gears. Check for accumulations of dirt or grease. and clean as required. pay particular attention to evidence of loose parts from automatic typer. Check local off-line functions for proper operation.
(5) Inspect selector mechanism for missing springs.
(6) Reassemble
machine. (Refer to reassembly procedures in paragraphs 6-12m through 6-12x.) Prior to reassembly, replace all worn, broken, or missing parts as required. Ensure that typing unit seats properly on keyboard base. Set gears by turning fan on rear of motor in a counterclockwise direction, as viewed from the fan end.
(7) Check left margin. With type box clutch disengaged, spacing drum in its
return position, and type box shifted to letters position, the clearance between the left edge of platen and letters print indicator should be between 15/16 inch and 1-1/6 inches.
(8) Check right margin. Observe that carriage return and line feed occur after 74 th character, with a slight overprint.
d. Quarterly Inspection and cleaning. Quarterly inspection and cleaning of the teletype machine is performed as follows:
(1) Set power switch to OFF; disconnect power cord from primary ac power source; remove loop current.
(2) Disassemble components as described in paragraph 4-c(1); remove platen. type box, and selector assembly.

CAUTION

Ensure that springs are not disengaged, or other parts disturbed in cleaning. Avoid getting dust or dirt into bearings or other moving parts. Cleaning with air hose should be avoided.
(3) Clean machine thoroughly using approved cleaning solvent and clean, soft, lint-free cloths.
(4) Relubricate machine. Refer to lubrication procedures in paragraphs 4-6 and 4-7.
(5) Reassemble machine.
(6) Check following adjustments and readjust if necessary:
(a) Left margin
(Friction feed - paragraph 6-3.1h(2)) (Sprocket feed paragraph 6-3.1c(1)) (earlier design - paragraph 6-7.1j(2)).
(b) Right
margin (Friction feed - paragraph 6-3.1h(15). 3.6h(17)) (Sprocket feed - paragraph 6-3.1c(3)) (earlier design 6-7.1h(7)). (Variable feature -6-5f(17) (earlier design variable feature - 6-9.1a(12)).
(c) Dash-pot
vent screw (paragraph 6-3.1h(10)).
(d) Carriage draw-wire rope (paragraph 6-3.1h(3)).

NOTE

Adjust clutches to the high side for 100 -wpm operation.
(e) A11
clutches.
4-6. TYPING UNIT LUBRICATION. The following paragraphs provide typing unit lubrication instructions and specify lubrication intervals (table 4-2) which depend on the amount of daily operation and the speed of operation. Lubrication methods for the typing unit are presented in lubrication charts located at the end of this chapter and indexed in table 4-3. The lubrication charts consist of photographs and line drawings. Photographs show the general area to be lubricated. Callouts on the photographs refer to line drawings indicating each specific mechanism to be lubricated and method of lubrication.

Table 4-2. Lubrication Interval
(Based on 5-Day Week)*

Daily Operation of Reyboard

Speed (wpm)	$0-8 \mathrm{hrs}$	$8-16 \mathrm{hrs}$	$16-24 \mathrm{hrs}$
60	52 wks	39 wks	26 wks
66	52 wks	39 wks	26 wks
75	52 wks	39 wks	26 wks
100	39 wks	26 wks	13 wks
Newly Installed Equipments (All Speeds)	3 wks	2 wks	1 wk

*For a 6-day week operation. reduce lubrication intervals 15 percent. For a 7 -day week operation, reduce lubrication intervals 30 percent.

Table 4-3. Typing Unit Lubrication Chart Index

Fiqure	Title	Paqe No.
4-3	Printing Area (Front View)	4-49
4-4	Printing Mechanism	4-50
4-5	Type Box Carriage Mechanism	4-51
4-6	Paper Feed Area	4-52
4-7	Paper Feed Mechanism	4-53
4-8	Code Bar Area	4-54
4-9	Code Bar Detents	4-54
4-10	Code Bar Mechanism (A)	4-55
4-11	Ribbon Area (A)	4-56
4-12	Ribbon Feed Mechanism (A)	4-57
4-13	Ribbon Feed Mechanism (B)	4-58
4-14	Vertical Positioning Mechanism	4-59
4-15	Ribbon Area (B)	4-60
4-16	Ribbon Feed Mechanism (C)	4-61
4-17	Vertical Positioning Mechanism	4-62
4-18	Selector Area	4-63
4-19	Code Bar Mechanism (B)	4-64
4-20	Selector Mechanism	4-65
4-21	Function Area (A)	4-66
4-22	Stunt Box Mechanism	4-67
4-23	Stipper Blade Mechanism	4-68
4-24	Function Area (B)	4-69
4-25	Ribbon Reverse Mechanism	4-70
4-26	Shift Mechanism	4-71
4-27	Function Rocker Shaft Mechanism	4-72
4-28	Spacing Area	4-73

Table 4-3. Typing Unit Lubrication

Fiqure	Title	Paqe No.
4-29	Spacing Drum Drive Mechanism	4-74
4-30	Carriage Return Mechanism	4-75
4-31	Spacing Drum.Feed Mechanism	4-75
4-32	Track Guide Mechanism	4-76
4-33	Horinzontal Positioning Area	4-77
$4-34$	Horizontal Positioning Mechanism (A)	4-78
$4-35$	Horizontal Positioning Mechanism (B)	4-79
4-36	Letters-Figures Shift Area	4-80
4-37	Letters-Figures Shift Mechanism (A)	4-81
4-38	Letters-Figures Shift Mechanism (B)	4-82
4-39	Oscillating Mechanism (A)	4-83
4-40	Oscillating Mechanism (B)	4-84
4-41	Main Shaft Area	4-85
4-42	Main Shaft Mechanism (A)	4-86
4-43	Main Shaft Mechanism (B)	4-87
4-44	Selector Cam Clutch Assembly	4-87
4-45	Main Shaft-clutches; Gears	4-88
4-46	Spacing Area	4-89
4-47	Spacing Mechanism (A)	4-90
4-48	Spacing Mechanism (B)	4-91
4-49	Spacing Mechanism(C)	4-92
4-50	Line Feed Area (A)	4-93
4-51	Line Feed Mechanism (A)	4-94
4-52	Line Feed Area (B)	4-95
4-53	Line Feed Mechanism (B)	4-96
4-54	Paper Guide Area	4-97

Table 4-3. Typing Unit Lubrication

Figure	Title	Page No.
4-55	Paper Guide Mechanism	4-98
4-56	Horizontal Tabulator Mechanism (Early Design)	4-99
4-57	Tabulator Shaft Mechanism	4-100
4-58	Space Suppression Mechanism	4-100
4-59	Horizontal Tabulator Mechanism (Early Design)	4-101
4-60	Operating Lever Mechanism	4-102
4-61	Spacing Clutch Mechanism	4-103
4-62	Selective Calling Mechanism	4-104
4-63	Stripper Bail Mechanism	4-105
4-64	Shift and Stripper Bail Mechanisms	4-106
4-65	Selective Calling Mechanism	4-107
4-66	Single-Double Line Feed Mechanism	4-108
4-67	Function Reset Bail Mechanism	4-109
4-68	Selective Calling Mechanism	4-110
4-69	Clutch Suppression Mechanism	4-111
4-70	Local Backspace Mechanism	4-112
4-71	Pawl Mechanism	4-113
4-72	Trip Mechanism	4-114
4-73	Reverse Line Feed Mechanism	4-115
4-74	Trip Mechanism	4-116
4-75	Line Feed Mechanism (C)	4-117
4-76	Page Feed-Out Mechanism	4-118
4-77	Drive Mechanism	4-119
4-78	Paper-Out Alarm Mechanism	4-120
4-79	Continuous Spacing Mechanism	4-121
4-80	slide Arm Bracket	4-122

NAVELEX 0967-LP-613-5010
Table 4-3. Trping Unit Lubrication Chart Index - Continued

Figure	Title	Page No.
4-81	Compression Spring	4-122
4-82	Trip Mechanism	4-123
4-83	Horizontal Tabulator Mechanism (Late Design)	4-124
4-84	Blocking Lever	4-125
4-85	Spacing Cutout Transfer Bail	4-126
4-86	Bail Extension Arm	4-126
4-87	Latch Bail	4-127
4-88	Operating Lever	4-128
4-89	Intermediate Bail	4-129
4-90	Slide Arm	4-130
4-91	Operating Lever	4-130
4-92	Two-Color Ribbon Mechanism: Oscillating Lever	4-131
4-93	Two-Color Ribbon Mechanism: Ribbon Operating Mechanism	4-132
4-94	Oniversal Contact stunt Box Mechanism	4-133
4-95	Operating Mechanism	4-134
4-96	Vertical Tabulation and Transmitter Distributor Control Mechanism	4-135
4-97	Form Alignment Switch Mechanism	4-136
4-98	Universal Contact Selector Mechanism	4-137
4-99	DC Magnet-Operated Print Suppression Mechanism	4-137
4-100	Letters-Figures Code Bar Shift Magnet Mechanism	4-138
4-101	Print Suppression and Off-Line Stunt Shift Control Mechanism	4-138
4-102	Form Feed-Out Mechanism	4-139

a. References to front, rear, left, right, etc., in the lubrication charts, apply to the typing unit as viewed by the operator facing the unit.
b. Lubricate the typing unit just prior to placing it in service. After 300 to 500 operating hours, relubricate the typing unit. Recheck all clutch gaps: reset if necessary. Thereafter, use the lubrication intervals specified in table 4-2.

WARNING

Disconnect power before applying any lubricant.
c. Apply a thick film of grease to all gears and the spacing clutch trip cam plate. Apply oil to all cams, including the camming surfaces of each clutch disc. The following symbols apply to the specific lubrication instructions indicated in the line drawings.

Symbol	Meaning
0	-
Apply MIL-L-17672	
G	$-\quad$ Apply MIL-G-23827

d. Apply MIL-L-17672 oil wherever the use of oil is indicated. Apply MIL-G-23827 grease on all surfaces wherever indicated. Whenever clutches are disassembled, apply a thin coat of grease to the shoe lever spring loops, and oil to the internal mechanisms. Fill lubricator reservoir at indicated intervals.
e. Lubricate the typing unit thoroughly. Saturate all felt washers and oilers, and apply oil to each end of all springs. Apply oil to points where it will adhere and not run off. Avoid over-1ubrication. Keep electrical contacts and wire insulations free of lubricants. In general. apply oil to all bearings, wicks, and locations where parts rub. slide, or move with respect to each other. Apply grease to gear teeth and points of heavy pressure.

4-7. KEYBOARD UNIT LUBRICATION. The following paragraphs provide keyboard unit lubrication instructions and specifiy lubrication intervals which depend on the amount of daily operation and the speed of operation. Lubrication methods for the keyboard unit are presented in lubrication charts located at the end of this chapter and indexed in table 4-4. The lubrication charts consist of photographs and line drawings. Photographs show the general area to be lubricated. Callouts on the photographs refer to line drawings indicating each specific mechanism to be lubricated and method of lubrication.
a. References in the lubrication charts made to left or right, top or bottom, and front or rear, apply to the mechanism in its normal operating position as viewed by the operator facing the unit.
b. All felt lubricating washers and all moving surfaces should be thoroughly lubricated. However, over-lubrication which would allow oil to drip. or grease to be thrown, on other parts should be avoided. Exercise special care to avoid

NAVELEX 0976-LP-613-5010
Table 4-4. Reyboard Unit Lubrication Chart Index

Fiqure	Title	Page No.
4-103	Keyboard Transmitter Mechanism	4-140
4-104	Keylevers	4-141
4-105	spacebar	4-141
4-106	Break and REPT Levers	4-142
4-107	Contact Block	4-142
4-108	Latchlever	4-143
4-109	Reset Bail	4-143
4-110	Code Bar Mechanism	4-144
4-111	Universal Lever	4-144
4-112	Solenoid Reset Mechanism	4-145
4-113	Gear Shift Assembly	4-146
4-114	Gear Shift Linkage	4-147
4-115	Gear Assembly	4-148
4-116	Local Carriage Return Mechanism	4-149
4-117	Local Line Feed Mechanism	4-149
4-118	Margin Indicator Switch	4-150
4-119	Cover Unit	4-151
4-120	Cover Latch Mechanism	4-152
4-121	Dome Stop Arm	4-152
4-122	Window Door Hinge	4-153
4-123	Dome Hinge	4-153
4-124	Time Delay Mechanism	4-154
4-125	Trip and Reset Mechanism	4-155
4-126	Cam Follower and Feed Mechanism	4-155

getting oil or grease on electrical contact surfaces.
c. Lubricate the
keyboard unit before putting the set into service or before placing it in storage. After a short period of service. relubricate the set to make certain that no areas have been missed. Thereafter, lubricate the mechanisms and units according to the schedule in table 4-2.
d. The following list of symbols applies to the specific lubrication instructions indicated in the line drawings.

D Keep dry - no lubricant permitted.

G Apply thin coat of grease.

O Apply 1 drop of oil.
02 Apply 2 drops of oil.
03 Apply 3 drops of oil. etc.

OS Oil sparingly (1 or 2 drops only).

OSD Oil sparingly or leave dry. (See NOTE below.j

OSL Oil sparingly or liberally.

SAT Saturate with oil.

NOTE
Applies to all areas not contacted by other parts.

CAUTION

Do not allow oil or grease to obstruct the light path between lamp assemblies and
photoelectric cells in the keyboard transmitter and distributor.
e. Use MIL-L-17672 oil
at all locations where the use of oil is indicated. Use MIL-G23827 grease on all surfaces where grease is indicated.

4-8. SCHEDULED PERFORMANCE TESTS. Performance tests consist of mechanical adjustment checks, described in paragraphs 4-8b and 4-8c, and operational tests described in paragraph 4-8d.
a. Preliminary

Instructions. Prior to performing mechanical adjustment checks, disassemble machine as follows:

WARNING

Disconnect power from unit. Failure to comply can cause serious injury.
(1) Remove cover:
(a) Depress plungers on sides of dome.
(b) Open window door by lifting from rear.
(c) Disconnect copy light plug.
(d) Push cover latches toward rear and lift cover.
(2) Remove typing
unit:
(a) Disconnect

P103 from J103.
(b) Remove B plug by pushing clips together at bottom.
(c) Remove four screws which mount typing unit on base.
(d) With left
hand under rear frame and right hand on side of front plate above dash pot. lift typing unit from base.
b. Keyboard Unit

Adjustment Checks. The following paragraphs describe procedures for checking keyboard unit adjustments.
(1) Check keyboard shutter window gap as follows:
(a) Refer to
figure 6-152.
(b) Depress

LTRS key to move all T-levers to their lowest position.
(C) Lift first
and last shutter with approximately one ounce of force.
(d) Measure clearance between upper edge of shutter window and shutter plate.
(e) Clearance should be between 0.065 inch and 0.075 inch. If clearance is not within specified limits, perform adjustment procedures described in paragraph 6-4.2a(1).

CAUTION

Exercise care to ensure no wires are broken when removing keyboard transmitter.
(2) Remove keyboard transmitter as follows:
(a) Disengage reset linkage from reset lever.
(b) Remove four mounting screws.
(c) Lift keyboard transmitter from base.
(3) Check keyboard universal link clearance as follows:
(a) Refer to figure 6-100 (low-level figure 6-153).
(b) Push universal lever down until latched by latch lever.
(c) Measure clearance between universal link and frame.
(d) Clearance should be between 0.089 inch and 0.103 inch. If clearance is not within the specified limits, perform adjustment procedures described in paragraph 6-4.1a(1) (high level) or paragraph 6-4.2a(2) (low-level).
(4) Replace and position keyboard transmitter as follows:
(a) Position keyboard transmitter on base so that slot ends in left and right brackets are against rear mounting screws.
(b) Secure transmitter with four mounting screws.
(c) Engage reset linkage with reset lever.
(5) Check distributor clutch drum (low-level only) as follows:
figure 6-155.
(a) Refer to
(b) With clutch manually disengaged and pressed against clutch drum, measure gap between ring and hub protrusion.

CAUTION

Do not distort ring while measuring gap.
(c) Gap should be betwen 0.005 inch and 0.010 inch. If gap is not within specified limits, perform adjustment procedure described in paragraph 6-4.2(1).
(d) Visually
inspect distributor clutch drum to determine drive arm is parallel to surface of drum assembly. If they are not parallel, manually bend drive arm until they become parallel as gauged by eye.
(6) Check distributor clutch shoe lever gap as follows:
(a) Refer to figure 6-119 (low-levelfigure 6-156).
(b) Disengage clutch.
(c) Measure gap between clutch shoe lever and stop lug. Record the value.
(d) Engage clutch.
(e) Repeat
(f) Subtract the value obtained in step (c) from that obtained in step (e).
(g) The
measurement in step (e) should be 0.055 to 0.085 inch greater than the measurement in step (c). If the difference is not within the specified limits. perform adjustment procedure described in paragraph 6-4.1b(5) (high-level) or paragraph 6-4.2a(2) (low-level.
(7) Check distributor clutch trip lever engagement as follows:
(a) Refer to
figure 6-116 (low-levelfigure 6-157).
(b) Ensure that clutch trip lever engages clutch shoe lever by full thickness of clutch shoe lever.
(c) If full engagement does not exist. perform the adjustment procedure described in paragraph 6-4.1b(2) (high-level) or paragraph 6-4.2b(3) (low-level).
(8) Check distributor clutch magnet plate (low level only) as follows:
(a) Refer to figure 6-158.
(b) Disengage
clutch.
(c) Set the control lever to REMOTE position.
(d) Ensure latch bail is aqainst armature.
(e) Measure gap between latch bail and trip lever.
(f) Gap should be between 0.020 inch and 0.040 inch. If gap is not within specified limits, perform adjustment procedure described in paraaraph 6-4.2b(4).
(g) Set control
lever to LOCAL position.
(9) Check
distributor gear backlash as follows:
(a) Refer to figure 6-136 (low-level - figure 6-150).
(b) Hold pinion gear stationary.
(c) Rotate driven gear back and forth while observing amount of backlash between pinion gear and driven gear at point in travel where clearance is minimum. As gauged by eye and feel, backlash should be barely perceptible (0.002 to 0.005) .
(d) If backlash adjustment is necessary, perform procedure described in paragraph 6-4.1c(5) (low-level - paragraph 6-4.2c(5)).
(10) Check distributor reset lever clearances (lowlevel only) as follows:
(a) Refer to
figure 6-160.
(b) Engage
distributor clutch and rotate until reset lever is at lowest point.
(c) Measure clearance between latchlever and reset lever, and between the base and the distributor and keyboard links. this is page 4-16
(c) Clearance
between latchlever and reset lever should not be less than 0.030 inch nor more than 0.045 inch. Clearance between the base and the distributor and keyboard links should not be less than 0.050 inch nor more than 0.090 inch. If either clearance exceeds specified limits, perform adjustment procedure described in paragraph 6-4.2b(6).
(11) Check distributor latch bail clearance (lowlevel only) as follows:
(a) Refer to figure 6-161.
(b) Disengage clutch.
(c) Ensure keyboard is reset.
(d) Set control lever to REMOTE position.
(e) Insert a 0.025 -inch gauge between bottom of armature and latch bail.
(f) Measure clearance between front of tab on armature and rear of tab on latch bail.
(g) Clearance should be between 0.010 inch and 0.018 inch. If clearance is not within specified limits, perform adjustment procedure described in paragraph 6-4.2b(7).
(h) Return
control lever to LOCAL position.
(12) Check distributor clutch trip armature aire gap as follows:
(a) Refer to
figure 6-115.
(b) Hold
armature flush against magnet core.
(c) Measure clearance between armature and magnet assembly bracket.
(d) Clearance should be between 0.004 inch and 0.008 inch. If clearance is not within specified limits, perform adjustment procedure described in paragraph 6-4.1b(1).
(13) Check keyboard contact wire clearances as follows:
(a) Refer to
figure 6-101.
(b) Place
keyboard in reset condition.
(c) Set T-levers in marking position.
(d) Using
feeler gauge, check clearance between contact wires and terminal is from 0.010 inch (minimum) to 0.025 inch maximum.
(e) Set T-levers in spacing condition.
(f) Check
clearance between contact wires and terminal is from 0.020 inch (minimum) to 0.040 inch (maximum). If not, perform adjustment procedure described in paragraph 6-4.1a(2).
(14) Check
distributor code level contacts as follows:
(a) Refer to
figure 6-123.
(b) Place cam follower lever on high part of cam by tripping clutch manually and rotating distributor shaft.
(c) Using
feeler gauge, check first six sontact gaps from clutch end of shaft. Gaps should be from 0.020 inch (minimum) to 0.030 inch (maximum). If not. perform adjustment procedure described in paragraph 6-4.1b(9).
(15) Check distributor solenoid contact gap as follows:
figure 6-125.
(a) Refer to
(b) Place
distributor clutch in latched or stop position.
(c) Using
feeler gauge, check solenoid contact gap is from 0.025 inch (minimum) to 0.030 inch (maximum). If not, perform adjustment procedure described in paragraph 6-4.1b(11).
c. Typing Unit

Mechanical Adjustment Checks. The following paragraphs describe procedures for checking typing unit adjustments.
(1) Check range finder knob phasing as follows:
(a) Refer to
figure 6-71.
(b) Rotate
range finder knob either clockwise or counterclockwise to the stop.
(c) zero on range scale should be within three points of index mark. If zero is more than three points away from index, perform adjustment procedure described in paragraph 6-3.1g(6).
(d) Rotate knob to set 60 on range scale at index.
(2) Check selector clutch stop arm as follows:
(a) Refer to figure 6-71.
(b) Set range scale at 60.
(c) With selector clutch disengaged and armature in marking position. clutch stop arm should engage clutch shoe lever by approximately the full thickness of shoe lever. If not, perform adjustment procedure described in paragraph 6-3.1g(7).
(3) Check selector clutch drum end play as follows:
(a) Refer to figure 6-80.
(b) With clutch
latched in stop position. measure cam-clutch assembly end play.
(c) Cam-clutch assembly should have some end play, but not to exceed 0.010 inch. If end play adjustment is necessary, perform procedure described paragraph 6-3.1g(17).
(4) Check code bar clutch trip lever end play as follows:
(a) Refer to figure 6-34.
(b) Disengage selector clutch and code bar clutch.
(c) Code bar clutch trip lever should engage clutch shoe lever by full thickness of clutch shoe lever. and trip shaft should have some end play, but not to exceed 0.006 inch.
(d) If either engagement or end play adjustment is necessary, perform procedure described in paragraph 6-3.1d(5).
(5) Check function clutch trip lever end play as follows:
(a) Refer to
figure 6-41.
(b) Disengage code bar clutch and function clutch.
(c) Function clutch trip lever should engage clutch shoe lever by full thickness of clutch shoe lever. (Check at lug with least bite on three stop clutches). Trip lever shaft should have some end play, but not to exceed 0.006 inch.
(d) If either engagement or end play adjustment is necessary, perform procedure described in paragraph 6-3.1d(13).
(6) Check clutch
trip shaft set collars as follows:
(a) Refer to figure 6-39 (earlier design figure 6-239).
(b) Measure spacing cutout lever end play.
(c) Lever should have some end play, not to exceed 0.008 inch.
(d) Measure line feed clutch latch lever side play.
(e) Lever
should have some side play, not to exceed 0.008 inch.
(f) If side
play adjustment is required. perform procedure described in paragraph 6-3.1d(11) (earlier design - paragraph 6-7.1d(2)).
(7) Check type box clutch trip lever eccentric post as follows:
(a) Refer to figure 6-42.
(b) Disengage type box clutch.
(c) Ensure that trip lever engages clutch shoe lever by full thickness of shoe lever.
(d) If full
engagement does not exist, perform adjustment procedure described in paragraph 6-3.1d(14).
(8) Check spacing c? retch trip lever as follows:
(a) Refer to figure 6-38 (earlier design figure 6-241).
(b) Disengage
clutch.
(c) Trip clutch trip lever and rotate main shaft until trip lever is over shoe lever. Take up play of shoe lever inward by snapping trip lever over shoe lever.
(d) Check
clearance between shoe lever and drum at each of three stop positions to determine which stop yields greatest clearance.
(e) With trip
lever at stop position which yields greatest clearance. rotate main shaft slowly until trip lever just falls off stop lug. Check clearance between
trip lever and drum. Clearance should be from 0.018 to 0.035 inch less than clearance between shoe lever and drum.
(f) If
clearance adjustment is necessary, perform procedure described in paragraph 6-3.1d(10) (earlier design paragraph 6-7.1d(4).
(9) Check line feed clutch trip lever eccentric post as follows:
figure 6-43.
(b) Disengage
clutch.
(c) Trip clutch trip lever and rotate main shaft until trip lever is over shoe lever. Take up play of shoe lever inward by snapping trip lever over shoe lever.
(d) Check
clearance between shoe lever and drum of each of three stop positions to determine which stop yields greatest clearance.
(e) With trip lever at stop position which yields greatest clearance. rotate main shaft slowly until trip lever just falls off stop lug. Check clearance between trip lever and drum. Clearance should be from 0.018 to 0.035 inch less than clearance between shoe lever and drum.
(f) If clearance adjustment is necessary, perform procedure described in paragraph 6-3.1d(15).
(10) Check line feed clutch trip lever adjusting screw as follows:
(a) Refer to
figure 6-43.
(b) Set line feed function slide arm in rear position and clutch trip lever against its eccentric post.
(c) Hold trip arm against the function slide arm and measure clearance between end of trip lever adjusting screw and trip arm. clearance should not exceed 0.006 inch.
(d) If
clearance adjustment is necessary, perform procedure described in paragraph 6-3.1d(16).
(11) Check line feed spur gear detent eccentric as follows:
(a) Refer to
figure 6-20.
(b) Disengage
line feed clutch.
(c) Rotate platen until detent stud is seated between two teeth on line feed spur gear.
(d) When hand wheel is released, manually set the teeth on the feed bars inta engagement with the teeth on the line feed spur gear.
(e) The detent
stud should contact one gear tooth and be not more than 0.010 inch from other tooth. If adjustment is necessary, perform procedure described in paragraph 6-3.1c(6) .
(12) Check line feed clutch phasing as follows:
(a) Refer to
figure 6-21.
4-20
(b) Disengage type box clutch and take up play toward front.
(c) Measure gap between lower side of lock lever roller and top edge of shoulder on horizontal positioning lock lever. Gap should be between 0.055 inch and 0.090 inch. If not. perform adjustment procedure described in paragraph 6-3.1e(3).
(16) Check clutch shoe levers as follows:
(a) Refer to
figure 6-35.
(b) Disengage clutch and measure gap between clutch shoe lever and its stop lug. Record measurement.
(c) Engage and rotate clutch until clutch shoe lever is towards bottom of unit.
(d) With clutch
engaged, again measure gap between clutch shoe lever and its stop lug. Measurement should be 0.055 inch to 0.085 inch greater than measurement obtained in step (b) above. If adjustment is necessary, perform procedure described in paragraph 6-3.1d(7) .
(e) Repeat
steps (a) through (d) for each clutch.
(17) Check code bar shift lever drive arm as follows:
(a) Refer to figure 6-5 (earlier design figure 6-229).
(b) Engage and rotate code bar clutch until
code bar shift lever link is in uppermost position.
(c) There
should be some clearance, but not to exceed 0.025 inch. between top of code bar shift lever link roller and top of cam slots in top of code bar shift levers. If adjustment is necessary, perform procedure described in paragraph 6-4q.
(d) Code bar
shift lever link shaft should have some end play but not to exceed 0.006 inch. If adjustment is necessary, perform procedure described in paragraph 6-3.1a(5). earlier design paragraph 6-7.1a(1).
(18) Check transfer lever eccentric as follows:
(a) Refer to figure 6-7.
(b) Set up a
letters (12345) code
combination.
(c) Disengage
selector clutch.
(d) Engage and rotate code bar clutch until code bar shift lever link is in uppermost position.
(e) With play
of shift bar taken up for maximum clearance, measure clearance between rear code bar shift lever and code bar shift bar farthest from shift lever.
(f) Clearance
should be 0.010 to 0.025 . If not. perform adjustment procedure described in paragraph 6-3.1a(8).
(19) Check
intermediate arm back stop bracket as follows:
(a) Refer to
figure 6-8.
(b) Set up a blank (-----) code combination.
(c) Disengage selector and code bar clutches.
(d) Take up play to obtain maximum clearance between front code bar shift lever and inner step of code bar shift bar farthest from shift lever, then measure clearance.
(e) Clearance
should be from 0.010 inch to 0.025 inch. If not, perform adjustment procedure described in paragraph 6-3.1a(9).
(20) Check code bar shift lever link brackets as follows:
(a) Refer to figure 6-4 (earlier design link guide bracket - figure 6-230).
(b) Set up a letters (12345) code combination.
(c) Enqage and rotate code bar clutch until code bar shift lever link is in uppermost position.
(d) Ensure code
bars are detented.
(e) With play taken up for maximum clearance. measure clearance between right side of front code bar shift lever and shoulder of closest code bar shift bar. Clearance should be between 0.002 inch and 0.025 inch.
(f) Set up a blank (-----) code combination.
(g) Repeat
(h) With play taken up for maximum clearance. measure clearance between left side of rear code bar shift lever and shoulder of closest code bar shift bar. clearance should be between 0.002 inch and 0.025 inch.
(i) If
clearance in either step (e) or (h) above is not within specified limits, perform adjustment procedure described in paragraph 6-3.1a(4) (earlier design link guide bracket paragraph 6-7.1a(2)).
(21) Check type box clutch trip lever as follows:
(a) Refer to figure 6-36 (variable feature figure 6-170).
(b) Engage and rotate code bar clutch until trip shaft cam follower roller is on lowest surface of code bar clutch cam.
(c) Align
type box clutch disc stop lug with trip lever.
(d) Measure clearance between trip lever and stop lug. Clearance should be from 0.025 inch to 0.045 inch.
(e) Measure type box clutch latchlever side play. There should be some side play but it should not exceed 0.008 inch.
(f) If
clearance measured in step (d) or side play measured in step (e) exceed specified limits, perform adjustment procedure described in paragraph 6-3.1d(8) (variable features - paragraphs 6-5c (4). 6-5m(3)).
steps (c) and (d).
4-22
(22) Check carriage draw-wire rope as follows:
(a) Refer to
figure 6-85.
(b) Engage
and rotate type box clutch 180 degrees.
(c) As gauged by feel, rear upper cable should have slightly greater tension than front cable.
(d) Measure clearance between lower drawwire rope and carriage return latch bail post. Clearance should be 0.006 inch minimum.
(e) Measure clearance between lower drawwire rope and left horizontal positioning drive linkage. clearance should be 0.030 inch mi ni mum.
(f) If either clearance is insufficient. perform adjustment procedure described in paragraph 6-3. 1h(3).
(23) Check oscillating rail slide position as follows:
(a) Refer to figure 6-91 (earlier design figure 6-257).
(b) Move
type box carriage to right until feed pawl farthest advanced engages tooth immediately above cut-away section on spacing drum ratchet.
(c) Measure clearance between oscillating rail slide and right rear drawwire pulley at point on pulley where clearance is minimal.
(d) Clearance should be between 0.025 inch and 0.050 inch. If clearance is not within the specified limits, perform adjustment procedure described in
paragraph 6-3.1h(13) (earlier design - paragraph 6-7.1h(9)).
(24) Check printing carriage lower roller as follows:
(a) Refer to
figure 6-58.
(b) Move printing carriage to right.
(c) operate manual carriage return while holding printing carriage to right. Allow carriage to slowly return.
(d) Observe play of carriage on track is minimal over full length of track.
(e) If adjustment of eccentric bushing or sliding screw is necessary, perform procedure described in paragraph 6-3.1f(4).
(25) Check printing carriage position as follows:
(a) Refer to
figure 6-60.
(b) set up M
$(--345)$ code combination.
(c) Position printing carriage at approximate midpoint of platen.
(d) Engage and rotate type box clutch 180 degrees.
(e) From top view, as gauged by eye, ensure that M type pallet is centered
on printing hammer when hammer is touching pallet.
(f) If adjustment is necessary. perform procedure described in paragraph 6-3. 1f (6) .
(26) Check printing hammer bearing stud as.follows:
figure 6-61.
(a) Refer to
(k) Set up a
period (--345) code combination in upper case.
(c) Position printing carriage at approximate midpoint of platen.
(d) Engage
and rotate type box clutch 180 degrees.
(e) From right view, as gauged by eye, ensure that period type pallet fully engages printing hammer when hammer is touching pallet.
(f) If adjustment is necessary, perform procedure described in paragraph 6-3.1f(7).
(27) Check spacing trip lever bail cam plate as follows:
(a) Refer to figure 6-96.
(b) With spacing trip lever arm in upward position, engage and rotate type box clutch 180 degrees.
(C) Disengage
all function pawls from function bars.
(d) Measure clearance between top surface of
trip lever arm extension and spacing trip lever shoulder.
(e) Clearance should be between $c .010$ inch and 0.040 inch. If clearance exceeds specified limits, perform adjustment procedure described in paragraph 6-3.1h(21).
(28) Check printing track as follows:
(a) Refer to
figure 6-62.
(b) Set up blank (-----) code combination in figures.
(c) Position printing arm slide alternately over each printing track mounting screw.
(d) Position printing hammer operating bail latching extension in line with left face of latch shoulder.
(e) Measure
clearance between latching extension and latch shoulder.
(f) Clearance should be between 0.015 inch and 0.040 inch. If clearance exceeds specified limits, perform adjustment procedure described in paragraph 6-3.1f(12). Hold clearance to maximum.

NOTE
Cycle unit between each check.
(29) Check printing hammer stop bracket as follows:
(a) Refer to figure 6-57 (earlier design fiqure 6-246).
(b) Set up M
(--345) code combination.
(c) Engage and
rotate type box clutch 180 degrees.
(d) Hold
printing hammer stop bracket towards type pallet with eight ounces of force.
(e) Measure clearance between printing hammer and M type pallet across entire length of pallet.
(f) Clearance should be between 0.005 inch and 0.035 inch. If clearance is not within specified limits, perform adjustment procedure described in paragraph 6-3.1f (2) (earlier design - paragraph 6-7.1f(2)).
(30) Check. printing
arm as follows:
(a) Refer to
figure 6-57 (earlier design figure 6-246).
(b) Position printing track in its extreme downward position.
(c) Set
printing hammer operating bail against its stop.
(d) Take up play for maximum by lightly pressing down on printing arm slide and measure clearance between secondary printing arm and forward extension of printing hammer operating bail.
(e) There
should be some clearance, not to exceed 0.015 inch.
(f) Position
printing track in its extreme upward position.
(g) Disengage type box clutch.
(h) Measure clearance between right face of operating bail latching extension and left face of latch surface. Check right and left positions.
(i) Clearance should be 0.006 inch minimum.
(j) If clearance measured in steps (d) or (i) is not within specified limits, perform adjustment procedure described in figure 6-3.1f(1) (earlier design paragraph 6-7.1f(3).
(31) Check function reset bail blade as follows:
(a) Refer to figure 6-12 (earlier design figure 6-234).
(b) Engage and rotate code bar clutch until shoe lever just touches trip lever.
(c) Disengage all function pawls from function bars.
(d) Unlatch all function lever latches from function levers.
(e) Using spring puller, pull each function bar to rear and measure clearance between each function bar and function reset bail blade.
(f) Clearance should be between 0.018 inch and 0.035 inch. If clearance is not within specified limits, perform adjustment procedure described in paragraph 6-3.1b(6) (earlier design - paragraph 6-7.1b(4).
(32) Check carriage return latch bail as follows: figure 6-86.
(a) Refer to
(b) Manually
return carriage.
(c) Take up play in carriage return bail to right by holding right side against retainer.
(d) Measure clearance between carriage return lever and carriage return latch bail.
(e) Clearance should be between 0.004 inch and 0.040 inch. If clearance is not within specified limits, perform adjustment procedure described in paragraph 6-3.1h(5).
(33) Check carriage return lever as follows:
(a) Refer to
figure 6-87.
(b) Set up carriage return (--4-) code combination.
(c) Engage and rotate function clutch until stop luq is toward bottom of unit.
(d) Rotate spacing drum clockwise until carriage return latch bail overtravels carriage return lever.
(e) Measure
clearance between latching surface of carriage return latch bail and top of carriage return lever.
(f) Clearance
should be between 0.006 inch and 0.035 inch. If clearance is not within specified limits, perform
adjustment procedure described in paragraph 6-3.1h(7) (variable feature - paragraph 6-5b(1).
(34) Check left
margin as follows:
(a) Refer to
figure 6-18 'sprocket feed) or 6-84 (line feed). (For earlier design line feed, refer to figure 6-252.)
(b) Manually
return carriage.
(c) Shift type box to letters condition.
(d) Ensure front feed pawl is farthest advanced.
(e) Measure clearance between left edge of platen and letters print indicator.
(f) Clearance should be between $15 / 16$ inch and 1-1/16 inch. If clearance is not within the specified limits, perform adjustment procedure described in paragraph 6-4am, steps (1) through (7).
(g) Take up play in spacing shaft by rotating driven gear clockwise from a front view.
(h) Measure clearance between feed pawl and shoulder of ratchet tooth immediately above pawl. There should be some clearance, not to exceed 0.008 inch.
(i) Engage and rotate spacing clutch until rear feed pawl is farthest advanced and clutch is disengaged.
(j) Manually return carriage.
(k) Observe rear feed pawl drops into indentation between ratchet wheel teeth, and bottoms firmly in notch. If adjustment is necessary, perform procedure described in paragraph 6-3.1c(1) (sprocket feed) or 6-3.1h(2) (line feed). (For earlier design line feed, refer to paragraph 6-7.1h(2)).
(35) Check shift
linkage as follows:
(a) Refer to
figure 6-54.
(b) Position
carriage near midpoint at platen.
(c) Set up 0
(not zero) (---45) code combination.
(d) Engage and rotate type box clutch 180 degrees.
(e) Note position of printing hammer in relation to 0 (not zero) type pallet when hammer is pushed in to touch pallet.
(f) Manually buckle right shift linkage.
(g) Position of printing hammer in relation to 9 type pallet should be same as it was in relation to 0 (not zero) type pallet in step (e).
(h) Repeat
steps (b) through (g) using w and 2 type pallets and (12--5) code combination.
(i) If adjustment is necessary, perform procedure described in paragraph 6-3.h(5).
(36) Check stripper
blade drive cam position as follows:
(a) Refer to figure 6-15.
(b) Note amount of over-travel between upper peak of stripper blade drive cam and stripper blade drive arm.
(c) Engage and rotate function clutch 180 degrees.
(d) Note amount of over-travel between lower peak of stripper blade drive cam and stripper blade drive arm.
(e) Amount of
over-travel in steps (b) and (d) should be equal as gauged by eye. If adjustment is necessary perform procedure described in paragraph 6-3.1b(9).
d. Operational Tests.
operational tests for high-level CPP equipment are discussed below in paragraph 4-8d(1) and for low-level CPP equipment in paragraph 4-8d(2).
(1) Operational

Tests (High-Level) Figure 4-1 shows test setup required to perform high-level CPP test procedures described in table 4-5. If abnormal indications are encountered during a test, refer to Troubleshooting Index. table 5-1. in Chapter 5. Prior to conducting the tests. perform the following initial control setting on the AN-UGM8B(V) and TS-2616/UGM test sets shown in figure 4-1.

SIGNAL LINES (CONNECTED TO SET JACK VIA TB102)

Figure 4-1. CPP Test Setup (High-Level)

Table 4-5. Operational Test Procedures (High-Level)

Table 4-5. Operational Test Procedures (High-Level)- Continued

Table 4－5．Operational Test Procedures（High－Level）－Continued

Step	Action	Normal Indication	Reference Table 5－1
b．	Manually operate ribbon lever inward，on side where ribbon is being unwound．	（4）Proper，error－free test pattern typed． （5）Proper ribbon feed． Ribbon reverses．	Item 5 Item 6 Item 7
c．	Repeat step b ，using other ribbon lever．	Ribbon reverses．	Item 7
d．	Set SIG PATTERN switch on AN／UGM－8B（V）to STDY MR． Typing Unit Distorted Signal Check．		
a．	NOTE This test checks the ability of the typing unit to copy a distorted signal． Ensure DISTORTION SELECT switch on AN／UGM－8（V）is set to MARR BIAS．		

Table 4-5. Operational Test Procedures (High-Level) - Continued

Table 4－5．Operational Test Procedures（High－Level）－Continued

Step	Action	Normal Indication	Reference Table 5－1
5.	Typing Unit Proper Function Operation Check．		
a．	Unpluq AN／UGM－8B（V）test cord from patching panel．		
b．	Remove patch cord connected between SET and LPG jacks．		
c．	set power switch on CPP to ON．		
d．	Adjust channel current ADJUSTMENT control for reading of 60 on current meter．		
e．	Press FIGS key．		
f．	Press S key．	Signal bell rings．	Item 12
g．	Set single／double line feed lever（inside）to number 1 position．		
h．	Press LINE FEED key．	Typing unit single line feeds．	Item 14
i．	Set single／double line feed lever to number 2 position．		
j．	Repeat step h．	Typing unit double line feeds．	Item 14

Table 4-5. Operational Test Procedures (High-Level) - Continued

Step	Action	Norma1 Indication	Reference Table 5-1
k.	Press LOC CR key to return carriage.		
1.	Press M and REPT keys simultaneously until full	(1) There shall be 72 clear characters.	$\text { Items } 15$ $\text { and } 16$
	printed. carriage has returned, and printing has started on next line. count characters.	(2) The 74 th character shall strike over the 73rd character.	$\text { Items } 15$ $\text { and } 16$
		(3) The 75 th character shall print approximately in center of page, beneath 32nd through 42nd character.	Items 15 and 16
		(4) The 76th character shall print exactly under 1st character.	Items 15 and 16
		(5) The 77 th character shall print exactly under 2nd character.	Items 15 and 16
m.	Press RETURN key.	Carriage returns and line feeds.	Items 17 and 20
n.	Press LINE FEED key.	No line feed occurs.	Items 17 and 20
O.	Repeat step n .	No line feed occurs.	Items 17 and 20

Table 4-5. Operational Test Procedures (figh-Level)-Continued

Step	Action	Normal Indication	Reference Table 5-1
p. $\begin{aligned} & \\ & \\ & 6 .\end{aligned}$	Repeat step n. Local Functions Check.	Line feed occurs.	$\begin{aligned} & \text { Items } 17 \\ & \text { and } 20 \end{aligned}$
a.	Press LOC CR key.	Carriage returns.	Item 18
b.	Press and hold LOC LF key.	Line feed occurs continuously until key is released.	Item 19
7.	Keyboard Proper Operation Check.		
a.	Press each character and function key.	Selected character prints or selected function operates. (Keys operate easily.)	Item 22
b.	Set power switch on CPP to OFF.		
8.	Keyboard Distortion Check.		
a.	Refer to figure 4-1.		
b.	On patching panel, connect patch cord between CPP channel SET jack and LPG (top row) jack.		
c.	Plug TS-2616/UGM test cord into CPP channel LPG (2nd row) jack.		

Table 4-5. Operational Test Procedures (High-Level)-Continued

Step	Action	Normal Indication	Reference Table 5-1
d.	Set POWER switch on		
e.	Set power switch on CPP to ON.		
f.	Observe reading on PERCENT DISTORTION meter on TS-2616/UGM while pressing the following keys:	5-percent (maximum) .	Item 21
	(1) REPT and E		
	(2) REPT and LF		
	(3) REPT and Space		
	(4) REPT and CR		
	(5) REPT and T		
	(6) REPT and R		
	(7) REPT and Y		
	(8) REPT and A		
	(9) REPT and M		
	(10) REPT and LTRS		

Table 4-5. Operational Test Procedures (High-Level) - Continued

step	Action	Normal Indication	Reference Table 5-1
q.	Set DISTORTION SELECT switch on TS-2616/UGM to BIAS.		
h.	Repeat step f.	5-percent (maximum).	Item 21

AN/UGM-8B(V)

POWER ON OFF switch to OFF.

DISTORTION SELECT switch to MARK BIAS.

PERCENT DISTORTION switch to 0 .

STOP LENGTH SYNC-START/ STOP switch to S/S 1.42.

CHARACTER RELEASE switch to FREE RUN.

SIGNAL PATTERN switch to STDY MK.

RATE switch to 74.2.
LOOP POLARITY switch to either + or - to cause meter to deflect to right.

LOOP ADJ control fully counterclockwise.

HIGH-LEVEL OUTPUT MODE switch to EXT NEUT.

MARK SPACE switches to any position.

TS-2696/UGM
AC power switch to off (down) position.

PEAK RESET switch to AUTO.

RATE-BAUDS switch to 74.2.

CODE LEVEL switch to 5. DISTORTION SELECT switch to PEAK-TOTAL.

TRANSITION SELECT switch to ALI.

INPUT POLARITY switch
to either + or - to cause meter to deflect to right.

INPUT SELECT switch to NEOTRAL 60.

INPUT FIITER switch to IN.
(2) Operational

Tests (Low-Level). Figure $4-2$ shows test setup required to perform low-level CPP procedures described in table 4-6. If abnormal indications are encountered during a test, refer to Troubleshooting Index. table 5-1. Chapter 5. Prior to conducting the tests, perform the initial control settings on the AN/UGM-8B(V) and TS-2616/UGM test sets as described in paragraph 4-8d(1).

Figure 4-2. CPP Test Setup (Low-Level)

Table 4-6. Operational Test Procedures (Low-Level)

Table 4-6. Operational Test Procedures (Low-Level) - Continued

Table 4-6. Operational Test Procedures (Low-Level)-Continued

Table 4－6．Operational Test Procedures（Low－Level）－Continued

Step	Action	Normal Indication	Reference Table 5－1
	NOTE		
	This test checks the ability of the typing unit to copy a distorted signal．		
a．	Ensure DISTORTION SELECT switch on AN／UGM－8B（V）is set to MARK BIAS．		
b．	Set PERCENT DISTORTION switches as follows：		
	（1）TENS： 40 （2）UNITS： 0		
c．	Set SIGNAL PATTERN switch on AN／UGM－8B（V）to FOX．	Must copy one line with not more than one error．	Item 8
d．	Set DISTORTION SELECT switch to SPACE BIAS．	Same as step c．	Item 8
e．	Set DISTORTION SELECT switch to MARK END．	Same as step c	Item 8
f．	Set PERCENT DISTORTION switches as follows：		Item 8
	（1）TENS： 30 （2）UNITS： 5		

Table 4-6. Operational Test Procedures-(Low Level)- Continued

Step	Action	Normal Indication	Reference Table 5-1
g.	Set DISTORTION SELECT switch to SPACE END.	Same as step c.	Item 8
h.	Set DISTORTION SELECT switch to SWITCH BIAS.	Same as step c.	Item 8
i.	Set POWER ON OFF switch on AN/UGM-8B(V) to OFF.		
j.	Set power switches on CPP and ESA to OFF.		
$\begin{array}{ll}k . & \\ \\ & 5 .\end{array}$	Disconnect AN/UGM-8B(V) test cord from ESA. Typing Unit Proper Function Operation Check (KSR Only).		
a.	Install strap between TB1 and TB4 of ESA 323121 an shown in figure 4-2.		
b.	Set power switches on CPP and ESA to ON.		
c.	Press FIGS key.		
d.	Press S key.	Signal bell rings.	Îem 12
e.	Set single/double line feed lever (inside) to number 1 position.		

Table 4-6. Operational Test Procedures (Low-Level)-Continued

Step	Action	Normal Indication	Reference Table 5-1
f. 9	Press LINE FEED key. Set single/double line feed lever to number 2 position.	Typing unit single line feeds.	Item 14
h. i.	Repeat step f . Press LOC CR key to return carriage.	Typing unit double line feeds.	Item 14
j.	Press M and REPT keys simultaneously until full	(1) There shall be 72 clear characters.	Items 15 and 16
	printed, carriage has returned, and printing has started on next line. count characters.	(2) The 74th character shall strike over the 73rd character.	Items 15 and 16
		(3) The 75th character shall print approximately in center of page, beneath 32nd through 42 nd character.	Items 15 and 16
		(4) The 76th character shall print exactly under 1st character.	Items 15 and 16
		(5) The 77th character shall print exactly under 2nd character.	Items 15 and 16

Table 4-6. Operational Test Procedures (Low-Level) - Continued

Table 4-6. Operational Test procedures (Low-Level) - Continued

FIGURE 4-4

Figure 4-3. Printing Area (Front View)

(F

Figure 4-4. Printing Mechanism

Bearing Surface
Typebox Latch Toggle

Bearings

Hooks	Spring
Felt Wick	Spring
Bearing Surface	Typebox Latch
Bearing Surface	Typebox Link

(REAR VIEW)

FIGURE 4-7
PAPER FEED
MECHANISM

Figure 4-6. Paper Feed Area

Figure 4-8. Code Bar Area

Figure 4-9. Code Bar Detents

Engaging Surface	Ribbon Reversing Arm
Bearing Surface	Ribbon Reverse Levers
Engaging Surface	Ribbon Reverse Lever
Teeth	Ribbon Reverse Spur Gear

Figure 4-14. Vertical Positioning Mechanism

Figure 4-15. Ribbon Area (B)

Bearing Surface
Ribbon Reverse Lever

Engaging Surface Ribbon Reversing Lever

Engaging Surface Ribbon Reverse Lever

Teeth
(LEFT SIDE VIEW)
Figure 4-16. Ribbon Feed Mechanism (C)

(LEFT SIDE VIEW)

Figure 4-18. Selector Area

Figure 4-19. Code Bar Mechanism (B)

Bearing Guide
Slots
Push Lever Guide Bearing

Felt Wick
Engaging Surfaces

Guide Slot
Wick
Guide Slots
Hooks

Bearing Guide Slots
(RIGHT SIDE VIEW)

Teeth

Teeth

Hooks
(RIGHT SIDE VIEW)

Figure 4-20. Selector Mechanism

Figure 4-22. Stunt Box Mechanism

(REAR VIEW)
(Early Design)

\(\left.$$
\begin{array}{ll}\text { Engaging Surface } & \begin{array}{l}\text { Line Feed Stripper } \\
\text { Slide }\end{array}
$$

Guide Surfaces \& Stripper Slide\end{array}\right]\)| Engaging Surfaces | Stripper Blade |
| :--- | :--- |
| Guide Surfaces | Stripper Blade |
| Engaging Surface | Stripper Blade |
| | |

Engaging Surfaces $\begin{array}{ll}\text { Line Feed Function } \\ \text { Pawl Stripper }\end{array}$
Guiding Surface Stripper Blade
Upper and Lower Stripper Blade Surface

Guiding Surface Stripper Bail

Figure 4-25. Ribbon Reverse Mechanism

(REAR VIEW)

Figure 4-28. Spacing Area

Figure 4-29. Spacing Drum Drive Mechanism

Figure 4-30. Carriage Return Mechanism

Figure 4-31. Spacing Drum Feed Mechanism

Figure 4-33. Horizontal Positioning Area

Spring
Cod oar Bellcrank

Horizontal Motion Stop Slides

(FRONT VIEW)

Hooks Springs

Bearing Surfaces	Decelerating Slide Bellcranks
Engaging Surfaces	Decelerating Slides
Felt Washers	Shift Slide Drive Links

Bearing Surfaces

Decelerating Slide Belleranks

Decelerating Shift Slide Drive Links

Shift Slide Drive Links

Figure 4-36. Letters-Figures Shift Area

Felt Washer	Shift Slide Drive Link
Bearing Surface	Breaker Slide Bail
Bearing Surfaces	Main Bail Link

(FRONT VIEW)

Felt Washer
Bearing Surface
Shift Slide Drive Link

Bearing Surfaces
Breaker Slide Bail
Main Bail Link
(FRONT VIEW)

Figure 4-39. Oscillating Mechanism (A)

(BOTTOM VIEW)

Figure 4-43. Main Shaft Mechanism (B)

(FRONT VIEW)

Figure 4-44. Selector Cam Clutch Assembly

Figure 4-45. Main Shaft-Clutches; Gears

(LEFT SIDE VIEW)

Figure 4-50. Line Feed Area (A)

Figure 4-51. Line Feed Mechanism (A)

Figure 4-52. Line Feed Area
(B)

4-95

Figure 4-54. Paper Guide Area

(RIGHT SIDE VIEW)

Figure 4-56. Horizontal Tabulator Mechanism (Early Design)

Figure 4-57. Tabulator Shaft Mechanism

| Searing Surfaces | Spacing Cutout Transfer Bail |
| :--- | :--- | :--- |
| Spacing Cutout Transfer Bail | |

Figure 4-58. Space Suppression Mechanism

Figure 4-60. Operating Lever Mechanism

Figure 4-61. Spacing clutch Mechanism

Figure 4-62. Selective Calling Mechanism

Figure 4-64. Shift and Stripper Bail Mechanism

(REAR VIEW)

Figure 4-65. Selective Calling Mechanism

Figure 4-67. Function Reset Bail Mechanism

Figure 4-68. Selective Calling Mechanism

Fiqure 4-69. Clutch Suppression Mechanism

Figure 4－70．Local Backspace Mechanism

Figure 4-72. Trip Mechanism

Figure 4-73. Reverse Line Feed Mechanism

Figure 4-74. Trip Mechanism

Figure 4-75. Line Feed Mechanism (C)

Figure 4-76. Page Feed-Out Mechanism

Figure 4-77. Drive Mechanism

Figure 4-78. Paper-Out Alarm Mechanism

Figure 4-79. Continuous Spacing Mechanism

Figure 4-80. Slide Arm Bracket

Figure 4-81. Compression Spring

Figure 4-83. Horizontal Tabulator Mechanism (Late Design)

Figure 4-85. Spacing Cutout Transfer Bail

Figure 4-86. Bail Extension Arm

Hooks
Latch Bail Spring
(RIGHT SIDE VIEW)

Figure 4-88. Operating Lever

Figure 4-89. Intermediate Bail

Figure 4-91. Operating Lever

Shaft Mounting Surface

Engaging Surfaces

Felt Washers

Oscillating Lever and Roller Bail Ribbon Reversing Levers

Ribbon Spool Bracket Shaft

Figure 4-93. Two-Color Ribbon Mechanism Ribbon Operating Mechanism

Figure 4-94. Universal Contact Stunt Box Mechanism

Figure 4-95. Operating Mechanism

Figure 4-96. Vextical Tabulation and Transmitter Distributor Control Mechanism

Figure 4-97. Form Alignment Switch Mechanism

Figure 4-98. Universal Contact Selector Mechanism

Figure 4-99. DC Magnet-Operated Print Suppression Mechanism

Figure 4-100. Letters-Figures Code Bar Shift Magnet Mechanism

Figure 4-101. Print Suppression and off-Line Stunt Shift Control Mechanism

Figure 4-102. Form Feed-Out Mechanism

Figure 4-103. Keyboard Transmitter Mechanism

Figure 4-104. Reylevers

Figure 4-105. Spacebar

Figure 4-106. Break and REPT Levers

Figure 4-107. Contact Block

Figure 4-108. Latchlever

Figure 4-109. Reset Bail

Pivots
T-Levers (13)

Figure 4-110. Code Bar Mechanism

Figure 4-111. Universal Lever

Solenoid Plunger

Front and Rear Guide Slots

Reset Lever

Reset Shaft

Figure 4-113. Gear Shift Assembly

Drive Shaft

Idler Shaft
(KSR Only)
Variable Speed Shaft

Idler Shaft (KSR Only)

Idler Shaft
Variable Speed Shaft

Figure 4-115. Local Carriage Return Mechanism

Figure 4-117. Local Line Feed Mechanism

Figure 4-119. Cover Unit

Figure 4-120. Cover Latch Mechanism

Figure 4-121. Dome Stop Arm

Figure 4-122. Window Door Hinge

Figure 4-123. Dome Hinge

Figure 4-124. Time Delay Mechanism

Figure 4-125. Trip and Reset Mechansim

Figure 4-126. Cam Follower and Feed Mechanism

